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Introduction: 
- Haskell is a widely used purely functional language. Functional programming is based 

on mathematical functions. 
- Haskell is a lazy language. By lazy, we mean that Haskell won't evaluate any expression 

without any reason. When the evaluation engine finds that an expression needs to be 
evaluated, then it creates a thunk data structure to collect all the required information for 
that specific evaluation and a pointer to that thunk data structure. The evaluation engine 
will start working only when it is required to evaluate that specific expression. As a 
consequence, in Haskell, many short-circuiting operators and control constructs are 
user-definable whereas in other languages you’re stuck with what’s hardwired. 
E.g. Suppose we define f(x) = 4. Now, what does f(1/0) equal to? 
Most languages will do call by value, meaning that they will evaluate 1/0 first, which will 
give them an error. However, because Haskell is lazy, it doesn't evaluate 1/0 yet and will 
just plug in as-is. Oh x is unused, so f(1/0) = 4. 
In the pictures below, it shows a Python program and a Haskell program that tries to do 
the same thing, namely, create a function and have it return 4 and then call the function 
with the argument 1/0. In Python, this causes an error while in Haskell, it doesn’t.

 

 
- A Haskell application is nothing but a series of functions. 
- In conventional programming language, we need to define a series of variables along 

with their type. In contrast, Haskell is a strictly typed language. This means that the 
Haskell compiler is intelligent enough to figure out the type of the variable declared, 
hence we need not explicitly mention the type of the variable used. 

Comments: 
- Comments in Haskell are denoted as: 

1. Single line: -- 
2. Multi line: {- .. -} 
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Do Notation: 
- A do-block combines together two or more actions into a single action.  
- Note: In a do-block, you don’t use the keyword “in”. 

Variables: 
- The left-hand side is the name of the value. Furthermore, = is used to declare the 

expression that is bound to the name on the left side (value definition). 
E.g. a = 3 

- Haskell variables are immutable. 
E.g. If you do something like: 
a = 3 
a = a + 1 
print(a) 
You will get an error or your print(a) will not run. 

- We can name part of the computation using let or where. 
- There are 2 mains ways let is used in Haskell: 

1. This form is a let-expression, which is shown below: 
let [<definition>] in <expression> is an expression and can be used anywhere. 
E.g. let x = 5 in x + 1 

2. This form is a let-statement. This form is only used inside of do-block, and does 
not use in. 
E.g. 

 
Note: in must be used in conjecture with let. It has no meaning on its own. 

- where is part of a definition and is special syntax. where is bound to a surrounding 
syntactic construct, like the pattern matching line of a function definition. 
E.g. y = x + 1 where x = 5 

- E.g. Consider the code and output below: 

 

  

https://wiki.haskell.org/index.php?title=Pattern_matching&action=edit&redlink=1
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putStr, putStrLn and print: 
- putStr will print a string without a newline character at the end. 
- putStrLn will print a string with a newline character at the end. 
- print will just print whatever is in the parentheses.  
- E.g. Consider the code and output below: 

 
Basic Data Types: 

1. Numbers: 
- Haskell is intelligent enough to decode some number as a number. Therefore, you need 

not mention its type externally as we usually do in case of other programing languages. 
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- E.g. Consider the code and output below: 

 
- Note: :t is to include the specific type related to the inputs. 
- E.g. Consider the code and output below: 

 
Notice how it shows the type of the input. 

2. Characters: 
- Like numbers, Haskell can intelligently identify a character given in as an input to it. 
- E.g. Consider the code and output below: 

 
Note: The error message "<interactive>:1:1: Not in scope: `a'" means that the Haskell 
compiler is warning us that it is not able to recognize your input. Haskell is a type of 
language where everything is represented using a number.  
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3. String: 
- A string is nothing but a collection of characters. There is no specific syntax for using 

string, but Haskell follows the conventional style of representing a string with double 
quotation. 

- E.g. Consider the code and output below: 

 
- Note: Strings are just lists of characters, as shown below: 

 
4. Boolean: 
- Haskell has 2 boolean values: True and False. 
- E.g. Consider the code and output below: 
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- Note: True and False must have the T/F capitalized. true and false will get you errors, as 
shown below: 

 
5. List: 
- A List is a collection of the same data type separated by comma. 

E.g. [‘a’,’b’,’c’] is a list of characters. 
E.g. [1,2,3] is a list of numbers. 

- Like other data types, you do not need to declare a List as a List. Haskell is intelligent 
enough to decode your input by looking at the syntax used in the expression. 

- Lists in Haskell are homogeneous in nature, which means they won’t allow you to 
declare a list of different kinds of data type. 

- E.g. Consider the code and output below: 

 
- To get the length of a list, L, you can do length L. 

E.g. Consider the code and output below: 
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- To get the reverse of a list, L, you can do reverse L. 

E.g. Consider the code and output below: 

 

 
- To get the nth index of a list, L, you can do L !! n. 

Note: In Haskell, list indexes start at 0. So, L !! 0 gets the first element, L !! 1 gets the 
second element, and so on. 
E.g. Consider the code and output below: 
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- Note: head L returns the first element of a list while last L returns the last element of a 
list. 
E.g. Consider the code and output below: 

 

 
- To add elements to the start of a list, L, you can do element1 : element2 : … : L. 

This is called consing. In fact, Haskell builds all lists this way by consing all elements to 
the empty list, []. The commas-and-brackets notation are just syntactic sugar. So 
[1,2,3,4,5] is exactly equivalent to 1:2:3:4:5:[]. 
E.g. Consider the code and output below: 

 

  



CSCC24 Week 1 Notes 
9 

- To add elements to the end of a list, L, you can do L ++ [element1, element2, …]. 
E.g. Consider the code and output below: 

 

 
- To join 2 lists, L1 and L2, together, you can do L1 ++ L2. 

E.g. Consider the code and output below: 

 

 
- To Delete the first N elements from a list, L, you can do drop N L. 

E.g. Consider the code and output below: 
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- Note: To remove the first element of a list, L, you can do tail L. To remove the last 
element of a list, L, you can do init L. 
E.g. Consider the code and output below: 

 

 
- To get the first N elements of a list, L, you can do take N L. 

Note: The output will be returned as a list. 
E.g. Consider the code and output below: 

 

 
- To split a list, L, at the Nth position, you can do splitAt N L. 

E.g. Consider the code and output below: 

 

 
- To insert an element into the middle of a list, L, you have to split the list into two smaller 

lists, put the new element in the middle, and then join everything back together. There is 
no built-in function to do so. 
Syntax: let (b,c) = splitAt n a in b ++ [new_element] ++ c 
E.g. Consider the code and output below: 

 
- To delete an element into the middle of a list, L, you have to split the list in two, remove 

the element from one list, and then join them back together. There is no built-in function 
to do so. 
Syntax: let (b, c) = splitAt 2 a in b ++ (tail c) 
E.g. Consider the code and output below: 
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6. List Comprehension: 
- List comprehension is the process of generating a list using mathematical expression. 

Parametric Polymorphism: 
- A value is polymorphic if there is more than one type it can have. Polymorphism is 

widespread in Haskell and is a key feature of its type system. 
- Most polymorphism in Haskell falls into one of two broad categories: parametric 

polymorphism and ad-hoc polymorphism. 
- Parametric polymorphism refers to when the type of a value contains one or more 

(unconstrained) type variables, so that the value may adopt any type that results from 
substituting those variables with concrete types. 

- In Haskell, this means any type in which a type variable, denoted by a name in a type 
beginning with a lowercase letter, appears without constraints (i.e. does not appear to 
the left of a =>). In Java and some similar languages, generics (roughly speaking) fill this 
role. 

- For example, the function id :: a -> a contains an unconstrained type variable a in its 
type, and so can be used in a context requiring Char -> Char or Integer -> Integer or any 
of a literally infinite list of other possibilities. Likewise, the empty list [] :: [a] belongs to 
every list type, and the polymorphic function map :: (a -> b) -> [a] -> [b] may operate on 
any function type. Note, however, that if a single type variable appears multiple times, it 
must take the same type everywhere it appears, so e.g. the result type of id must be the 
same as the argument type, and the input and output types of the function given to map 
must match up with the list types. 

- Since a parametrically polymorphic value does not "know" anything about the 
unconstrained type variables, it must behave the same regardless of its type. This is a 
somewhat limiting but extremely useful property known as parametricity. 

- E.g. 

 
  

https://wiki.haskell.org/Polymorphism#Parametric_polymorphism
https://wiki.haskell.org/Polymorphism#Ad-hoc_polymorphism
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Functions: 
- Syntax: function_name argument(s) = function definition 

The function definition is a formula that uses the argument in context with other 
already defined terms. 
E.g. 
area r = pi * r ^ 2 Note: Here, r is an argument. 

 
increment n = n + 1 Note: Here, n is an argument. 

 
- Note: Call functions without parentheses. 
- Note: Function call is left associative. 
- Note: Function call takes precedence over operators. 
- Note: Functions can accept more than one parameter. 
- Note: In Haskell functions are first class values. That means they can be put in 

variables, passed and returned from functions, etc. You can also have function 
composition. I.e. You have a function that takes two functions and a value, applies the 
second function to the value and then applies the first function to the result. 

- We can supply only some of the arguments to a function. If we have a function that 
takes N arguments and we supply K arguments, we'll get a function that takes the 
remaining (N - K) arguments. 
E.g. Consider the code and output below: 

 
Here, we have a function, func1, that takes 3 arguments and adds them up. In this 
case, N = 3. However, we only supply 2 arguments (1 and 2), so in this case, K = 2 and 
we get a new function, func2, that takes (3-2 or 1) argument. When we enter the last 
argument for func2, it gives the sum of the 3 arguments (The first 2 arguments were 
passed to func1 and the 3rd argument was passed to func2.) 

- We can combine functions, too. 
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- E.g. Consider the code and output below: 

 
Here, I created a function called areaRectangle that takes in 2 arguments, a length and 
width, and gives back their product. Then, I created another function called areaSquare 
that takes in 1 argument, a length, and gives back s2, using areaRectangle to calculate 
it. Lastly, I created a third function called areaTriangle that takes 2 arguments, a base 
and height, and gives back the result of base*height/2, using areaRectangle to calculate 
base*height. 

- E.g. Consider the code and output below: 

 
Here, I created a function called double that takes an argument and gives back its 
double. Then, I created a function called quadruple that takes an argument and gives 
back its quadruple using the double function twice. Notice that I needed brackets for 
double (double x). When I tried doing double double x, it gave me an error. 

- We can give values a type signature using ::. Furthermore, we use -> to denote the type 
of a function from one type to another type. Note: -> is right associative. 
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- E.g. Consider the code and output below: 

 

 
In the first picture, I didn’t use ::. Hence, when I did double 2.4 and double 5.6, I didn’t 
get an error. However, in the second picture, I did double :: Int -> Int. This means that 
the input must be of type Int. Hence, when I do double 2.3, it gives me an error. 
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Addition Operator: 
- The “+” operator is used for addition. 
- E.g. 

 

 
Subtraction Operator: 

- The “-” operator is used for subtraction. 
- E.g. 

 

 
- Note: It’s best to use parentheses “()” to enclose negative numbers. Otherwise, the 

compiler might think the “-” isn’t part of the number. 
E.g. 

 
Multiplication Operator: 

- The “*” operator is used for multiplication. 
- E.g. 
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Division Operator: 
- The “/” operator is used for division. 
- E.g. 

 

 
Exponent Operator: 

- The “^” operator is used for exponent. 
- Syntax: base^exponent 
- E.g. 

 

 
- E.g. 

 

 
Sequence/Range Operator: 

- The “..” operator is used for sequence or range. 
- You can use this operator while declaring a list with a sequence of values. 
- If you want to print all the values from 1 to 10, then you can use something like "[1..10]". 

Similarly, if you want to generate all the alphabets from "a" to "z", then you can just type 
"[a..z]". 
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- E.g. 
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Pattern Matching: 
- Pattern matching means that you write down a literal at the place where you're 

supposed to write the parameter(s).  
- E.g. 

 

 
- E.g. 

 

 
Case Expressions: 

- Allows us to write control flows on data types. 
- Matches from top to bottom. 
- Note: The pattern _ means match anything. 
- Syntax: 

case <expr> of 
  <pattern1> -> <result1> 
  <pattern2> -> <result2> 
  ... 
  <patternN> -> <resultN> 

- E.g. 
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- E.g. 

 

 
If statements: 

- Syntax: 
if (condition) 
    then (value) 
else if (condition) 
    then (value) 
else 
    (value) 

- E.g. 

 

 
- Note: The else if is conditional, but you must have the if and the else. 

type, term, value: 

 
- Note: term is also widely known as expression. 
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- Note: 5+4 is a term; the result of evaluating it, 9, is a value. 
I.e. term is your code and value is the result of the term. 

Synthesis and Evaluation: 
- Synthesis is how you write code. 
- Evaluation is how the computer runs your code. 
- For synthesis, using induction can help you write the code. 
- E.g. Consider the factorial code below: 

 
Here is the mindset of how to write it: 

WTP: For all natural n: Factorial n = n! 
Base case: 
WTP: Factorial 0 = 0! 
Notice that 0! = 1, so if I code up Factorial 0 = 1, I get Factorial 0 = 0!. 
Induction step: 
Let natural n ≥ 1 be given. 
Induction hypothesis: Factorial (n-1) = (n-1)! 
WTP: Factorial n = n! 
Notice that  n! = n*(n-1)! 

= n * Factorial (n-1)  by I.H. 
So if I code up Factorial n = n * Factorial (n-1), I get Factorial n = n!. 

Here is the evaluation of factorial 3: 
→ 3 * factorial(3 - 1) 
→ 3 * factorial(2) 
→ 3 * (2 * factorial(2 - 1)) 
→ 3 * (2 * factorial(1)) 
→ 3 * (2 * (1 * factorial(1-1))) 
→ 3 * (2 * (1 * (factorial(0)))) 
→ 3 * (2 * (1 * 1)) 
→ 3 * 2 
→ 6 

Guards: 
- Denoted by “|” 
- We use | to say alternatively. 
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- E.g. 

 

 
- E.g. 

 

 
Lists: 

- Some types of lists are [Integer], [Bool], [] Integer, [] Bool, etc. 
- An empty list is denoted as []. 
- A list literal is denoted like [4, 1, 6]. 

Note: Remember that Haskell makes lists in this way: 
(4 : (1 : (6 : ([])))) or 4 : 1 : 6 : [] 
The parentheses are optional. 

- Formally (recursive definition as in CSCB36): a list is one of: 
- [] 
- <an item here> : <a list here> 

- Note: These are singly-linked lists. These are not arrays. 
- Note: Lists are immutable in Haskell. 
- E.g. Insertion Sort: 

Strategy: Have a helper function insert. 
Take element e and list xs. xs is assumed to have been sorted in increasing order. 
Put e into the “right place” in xs so the whole is still sorted.  
E.g. insert 4 [1,3,5,8,9,10] = [1,3,4,5,8,9,10] 
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Here’s the code: 

 
E.g. 
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Introduction: 
- In Haskell, lists are a homogenous data structure. It stores several elements of the 

same type. That means that we can have a list of integers or a list of characters but we 
can't have a list that has a few integers and then a few characters.  

- Lists are denoted by square brackets and the values in the lists are separated by 
commas. 

- E.g. 

 
List Operations: 
Note: I will use L1 and L2 to denote lists in the examples below, and e1 and e2 to denote 
elements. 

1. Adding to the beginning of a list: 
- To add to the beginning of a list, use “:”. This is called consing. In fact, Haskell builds all 

lists this way by consing all elements to the empty list, []. The commas-and-brackets 
notation are just syntactic sugar. So [1,2,3,4,5] is exactly equivalent to 1:2:3:4:5:[]. 

- Syntax: e1 : L1  
- E.g. 

 
2. Adding to the end of a list: 
- To add to the end of a list, use “++”. 
- Syntax: L1 ++ [e1] 
- E.g. 

 
3. Joining 2 lists: 
- To join L2 to L1, do L1 ++ L2. 
- E.g. 

 
 

4. Comparing Lists: 
- Lists can be compared if the stuff they contain can be compared. When using <, 

<=, >, >=, == to compare lists, they are compared in lexicographical order. 
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- Syntax: 
L1 > L2 
L1 >= L2 
L1 < L2 
L1 <= L2 
L1 == L2 

- E.g. 

 
5. Head: 

- head takes a list and returns its first element. 
- Syntax: head L1 
- E.g. 

 
6. Last: 

- last takes a list and returns its last element. 
- Syntax: last L1 
- E.g. 

 
7. Init: 

- init takes a list and returns everything except its last element. 
- Syntax: init L1 
- E.g. 

 
8. Tail: 

- tail takes a list and returns everything except for the first element. 
- Syntax: tail L1 
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- E.g. 

 
9. Length: 

- length takes a list and returns its length. 
- Syntax: length L1 
- E.g. 

 
10. Reverse: 

- reverse takes a list and returns its reverse. 
- Syntax: reverse L1 
- E.g. 

 
11. Take: 

- take takes a number and a list. It extracts that many elements from the beginning 
of the list. 

- Syntax: take num L1 
- E.g. 

 
12. Drop: 

- drop takes a number and a list and it removes that many elements from the list. 
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- Syntax: drop num L1 
- E.g. 

 
13. Range/Sequence: 

- Denoted by “..” 
- Syntax: [starting_element .. end_element] 
- E.g. 

 
14. Other facts: 

- To show that a list only has 0 elements, you can do this: []. 
- To show that a list only has 1 element, you can do this: [a] or (a:[]). 
- To show that a list has 1 or more elements, you can do this: (a:_). The “_” means 

0 or more items. 
- There's also a thing called as patterns. Those are a handy way of breaking 

something up according to a pattern and binding it to names whilst still keeping a 
reference to the whole thing. You do that by putting a name and an @ in front of 
a pattern. For instance, the pattern xs@(x:y:ys). This pattern will match exactly 
the same thing as x:y:ys but you can easily get the whole list via xs instead of 
repeating yourself by typing out x:y:ys in the function body again. 
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- E.g. 

 
- E.g. 

 

 
- E.g. 

 
- E.g. 
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Lambda Functions: 
- It is an anonymous function, which is a function without giving it a name. 
- A lambda function is denoted by the "\" character. 
- Syntax: \(var) -> (expression) 

E.g. 

 

 
- Note: Lambda functions can be used as a substitute for missing parameters. 
- If you intend 2 parameters, the Haskell culture is to model it as a nested function:  

\x -> (\y -> 2*x - 3*y) (those parentheses can be omitted). This creates a function that 
maps the 1st parameter to a function that takes the 2nd parameter. Doing this is called 
currying. 
The shorthand way of doing it is: \x y -> 2*x - 3*y 
E.g. 

 

 
Notice that both ways work and give the same result. 

- Recall from earlier diffSq x y = (x - y) * (x + y). This can be written as  
diffSq = \x y -> (x - y) * (x + y) or even diffSq x = \y -> (x - y) * (x + y). 
E.g. 

 

 
- When applying a function to 2 parameters, such as doing function a b, that’s shorthand 

for (function a) b. 
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E.g. 
diffSq 10 5 is shorthand for (diffSq 10) 5. 

 Compare this with the diffSq examples from above and 
notice that you get the same result. 

- Note: It is possible to use “diffSq 10” alone. This is called a partial application. Partial 
application is when you decide to use a function but not give it all of the needed 
parameters. When it is evaluated, here is what happens: 
diffSq 10 
→ (\x y -> (x - y) * (x + y)) 10 
→ \y -> (10 - y) * (10 + y) 

- Typewise, X -> Y -> A is shorthand for X -> (Y -> A). 
Higher Order Function: 

- Higher Order Functions are a unique feature of Haskell where you can use a function 
as an input or output argument. 
Note: We use () to show that a function takes a function as an input. 

- E.g. 

 

 
The first function multiplies each variable by 2. 4*2 + 7*2 = 22. 
The second function squares each variable. 42 + 72 = 65. 
The third function increases each variable by 2. 4+2 + 7+2 = 15. 
In the first picture above, (Int -> Int) shows that four_plus_seven takes in a function as 
an input and that function takes in an Int as an input and outputs something of type Int. 

- E.g. 

 

 
5*4 + 12 = 32 
5*7 + 12 = 47 
32 + 47 = 79 

Parametric Polymorphism: 
- A polymorphic function is a function that works for many different types. 
- Polymorphic: Can become one of many types. 
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- Monomorphic: Stuck with being one single type. 
- Also known as generics in other languages. 
- Type variables always begin in lowercase whereas concrete types like Int or String 

always start with an uppercase letter. 
- Just as a variable represents some value of a given type, a type variable represents 

some type. A type variable represents one type across the type signature and function 
definition in the same way a variable represents a value throughout the scope it's 
defined in. 

- E.g. 

 
In the add function, only Integers are allowed. Hence, when I tried doing add 2.0 3.0, I 
got an error. However, in add2, as long as the inputs are numbers, I can add integers, 
floats or a mix. 
Note: Num x => just means that x must be of type Num, or x must be a number. I need 
to put this or else I get an error. This is because if I don’t specify the type, I could, 
theoretically, add 2 non-numbers, which would cause an error. Hence, Haskell mandated 
that I put the Num x => part. 

- E.g. 
rep2 :: a -> [a] 
In a -> [a], the “a” there is a type variable or type parameter. Names of type variables 
are up to you, doesn't have to be “a”, but does have to start with lowercase. 
E.g. element, myElementType, etc 
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Note: Type constants/Concrete types, names of built-in types and defined types, start 
with uppercase. 
E.g. Integer, Bool, String 

- Note: The choice of the type is up to the user, not the provider. Furthermore, in 
parametric polymorphism, the “parametric” part means that the provider is not told what 
the user chooses. As a result, the code can be inflexible. However, it’s easy to test your 
code. 

- Generally, flexibility for the implementer is in direct conflict with predictability for the user 
and vice versa. 

Map: 
- A map is the name of a higher-order function that applies a given function to each 

element of a functor, such as a list, returning a list of results in the same order. It is often 
called apply-to-all when considered in functional form. 

- Can be written in 2 ways: 
1. map :: (a -> b) -> [a] -> [b] 
2. map :: (a -> b) -> ([a] -> [b]) 

- E.g. 

 

 
By having the word “map”, it allowed me to use the square function on a list. 

- E.g. 

 

 
Notice that when I put the keyword “map” at the beginning, I can run ascii_conversion on 
a list. 

https://en.wikipedia.org/wiki/Functional_form
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- What it does by example: 
map ord ['a', 'b', 'c'] 
= [ord 'a', ord 'b', ord 'c'] 
= [97, 98, 99] 

- Consider this: map (map ord) [['a', 'b', 'c'], ['x', 'y', 'z']] :: [[Int]] 
Detailed type breakdown: 

- inner map :: (Char -> Int) -> ([Char] -> [Int]) 
(I'm choosing a=Char, b=Int) 

- map ord :: [Char] -> [Int] 
- outer map :: ([Char] -> [Int]) -> [[Char]] -> [[Int]] 

(I'm choosing a=[Char], b=[Int]) 
- map (map ord) :: [[Char]] -> [[Int]] 

- What it does by example: 
map (map ord) [['a', 'b', 'c'], ['x', 'y', 'z']] 
= [map ord ['a', 'b', 'c'], map ord ['x', 'y', 'z']] 
= [[ord 'a', ord 'b', ord 'c'], [ord 'x', ord 'y', ord 'z']] 
= [[97, 98, 99], [120, 121, 122]] 

- E.g. 

 
- Note: To use ord, you need to do import Data.Char. 

Type-specific behaviour preview: 
- Consider the code below: 

 
The square function takes in a number and returns the square of that number. Since any 
number, not just integers, can be squared, we want to use parametric polymorphism. 
However, there’s an issue. What happens if the user enters a string or boolean? To 
avoid this problem, we have to do the following: 

 
By putting the Num a => part, we are saying that “a” must be a number. 

User-defined types:  
- Also called algebraic data types. 
- We can define our own types using the keyword data. 
- Each option must start with an uppercase letter. 
- We use | to say alternatively. 
- There needs to be at least one case, and each case can have 0 or more fields. 
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- E.g. 

 

 

 
Here, the type name is Area. 
Circle, Square and Triangle are called data constructors or tags. As stated before, all 
these data constructors must be capitalized. 
Note: These are not OOP constructors. It's only labelling, not arbitrary initialization code. 
Note: These are not OOP subclasses/subtypes either. Circle is not a subtype, it's a term 
and value. 

Recursive types: 
- A recursive data type is a data definition that refers to itself. 
- This lets us define even more interesting data structures such as linked lists and trees. 
- The line, deriving (Eq, Show), is called the deriving clause. It specifies that we want 

the compiler to automatically generate instances of the Eq and Show classes. The EQ 
type class is an interface which provides the functionality to test the equality of an 
expression. The Show type class has a functionality to print its argument as a String. 
Whatever may be its argument, it always prints the result as a String. 
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- E.g. 
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Recursion & Lists: 
- E.g. Consider the example below: 

 
A value of type MyIntegerList is one of: 

1. INil 
2. ICons x xs, if x::Integer and xs::MyIntegerList 

 
data MyIntegerList = INil | ICons Integer MyIntegerList 
    deriving (Show, Eq) 
 
exampleMyIntegerList = ICons 4 (ICons (-10) INil) 
 
-- `from0to n` builds a MyIntegerList from 0 to n-1 
from0to :: Integer -> MyIntegerList 
from0to n = make 0 
  where 
    make i | i >= n = INil 
           | otherwise = ICons i (make (i+1)) 
 
myISum :: MyIntegerList -> Integer 
myISum INil = 0 
myISum (ICons x xs) = x + myISum xs 

 
Recursion & Binary Trees: 

- E.g. Consider the example below: 
 
A value of type IntegerBST is one of: 

1. IEmpty 
2. INode lt x rt, if lt::IntegerBST, x::Integer, rt::IntegerBST 

 
data IntegerBST = IEmpty | INode IntegerBST Integer IntegerBST 
    deriving Show 
 
exampleIntegerBST = INode (INode IEmpty 3 IEmpty) 7 (INode IEmpty 10 IEmpty) 
 
ibstInsert :: Integer -> IntegerBST -> IntegerBST 
ibstInsert k IEmpty = 
    INode IEmpty k IEmpty 
ibstInsert k inp@(INode left key right)  
    | k < key = INode (ibstInsert k left) key right 
    | k > key = INode left key (ibstInsert k right) 
    | otherwise = inp   -- INode left key right 
 
Note: Since this is functional programming with immutable trees, “insert” means produce 
a new tree that is like the input tree but with the new key. Maybe it's better to say “the 
tree plus k”. 
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Polymorphic Types: 
- Consider the example below: 

 
data MyList a = Nil | Cons a (MyList a) deriving (Eq, Show) 
 
exampleMyListI :: MyList Integer 
exampleMyListI = Cons 4 (Cons (-10) Nil) 
 
exampleMyListS :: MyList String 
exampleMyListS = Cons "albert" (Cons "bart" Nil) 
 
These are homogeneous lists. They can't have different item types in the same list. 
For example, Cons "albert" (Cons True Nil) is illegal because what would be its type, 
MyList String? MyList Bool? 

- Some polymorphic algebraic data types from the standard library as further examples: 
- Maybe: 

data Maybe a = Nothing | Just a 
-- Great for: Sometimes there is no answer 
 

- Either: 
data Either a b = Left a | Right b 
-- Great for: Having two possible types. 
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Evaluation Order 
- Most languages use call by value for evaluation order. 

I.e.  To evaluate f(x,y), evaluate x and y first (which one first depends on the language), 
then plug into f's body, and then evaluate the body. 

- E.g. If there is a function defined as f(x, y) = x: 
 f (3+4, div(4, 2))    eval a parameter, arithmetic 
→ f (7, div(4, 2))      eval the other parameter, arithmetic 
→ f (7, 2)              ready to plug in at last 
→ 7 

- However, a problematic parameter can cause an error/exception even if it would be 
unused: 
f (3+4, div(1, 0))    eval a parameter, arithmetic 
→ f (7, div(1, 0))      eval the other parameter, arithmetic 
→ Error caused by div(1,0) 

- Haskell uses “lazy evaluation.” Lazy evaluation is also known as call by need. 
- Lazy evaluation in Haskell (sketch): 

- To evaluate “f x y”: don’t evaluate x and y first. Just plug x and y into f’s right 
hand side (RHS) and evaluate that. 
If the RHS refers to the same parameter multiple times: same shared copy, no 
duplication. 

- If that runs you into pattern matching: evaluate parameter(s) just enough to 
decide whether it's a match or non-match. If match, plug into RHS and evaluate. 
If it’s a non-match, try the next pattern. (If it runs out of patterns, declare 
“undefined” aka “error”.) 

- To evaluate arithmetic operations, use call-by-value. 
- E.g. 

 

 
- E.g. 

 

 
Take Function in Haskell: 

- The take function takes a number and a list and returns the first n elements of the list, 
where n is the number inputted. 

- E.g. take 3 [a,b,c,d,e] = [a,b,c] 
- E.g. take 3 [a,b] = [a,b] 
- The implementation goes like this: 

take 0 _ = [] 
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take _ [] = [] 
take n (x:xs) = x : take (n-1) xs 

Single Linked List: 
- Recall that lists in Haskell are linked lists. 
- Singly-linked list is a very space-consuming data structure (all languages). And if you 

ask for “the ith item” you're doing it wrong. 
- E.g. 

 
Equivalently, using the function composition operator “.”, we get: 
cubeRoot = within 0.001 . iterate next 

- With this, you really have a pipeline like Unix pipelines. 
- If you use lists lazily in Haskell, it is an excellent control structure—a better for-loop than 

for-loops. Then list-processing functions become pipeline stages. If you do it carefully, it 
is even O(1)-space. If furthermore you're lucky (if the compiler can optimize your code), 
it can even fit entirely in registers without node allocation and GC overhead. 

- Thinking in high-level pipeline stages is both more sane and more efficient—with the 
right languages. 

- Some very notable list functions when you use lists lazily as for-loops, or when you think 
in terms of pipeline stages: 

- Producers: repeat, cycle, replicate, iterate, unfoldr, the [x..], [x..y] notation 
(backed by enumFrom, enumFromTo) 

- Transducers: map, filter, scanl, scanr, (foldr too, sometimes) take, drop, splitAt, 
takeWhile, dropWhile, span, break, partition, zip, zipWith, unzip 

- Consumers: foldr, foldl, foldl', length, sum, product, maximum, minimum, and, 
all, or, any 

- A producer is some monadic action that can yield values for downstream consumption. 
- A consumer can only await values from upstream. 
- A transducer is like a combination of both producers and consumers. 
- E.g. of iterate: 
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When lazy evaluation hurts: 
- E.g. Consider the code below: 

 
It takes a number, 0, and a list of numbers and computes the sum of the numbers in the 
list. 

 
Evaluation of mySumV2 [1,2,3]: 
mySumV2 (1 : 2 : 3 : [])    plug in 
→ g 0 (1 : 2 : 3 : [])        match, plug in 
→ g (0 + 1) (2 : 3 : [])      match, plug in 
→ g ((0 + 1) + 2) (3 : [])    match, plug in 
→ g (((0 + 1) + 2) + 3) []    match, plug in 
→ ((0 + 1) + 2) + 3           arithmetic at last 
→ (1 + 2) + 3                 ditto 
→ 3 + 3                       ditto 
→ 6 
This takes Ω(n) space for the postponed arithmetic. 

- Note: If there is recursion, you bracket right to left. If there is no recursion, you bracket 
left to right. If you look at the example of mySumV2 [1,2,3], you’ll see that it’s bracketed 
left to right. I.e. (((0 + 1) + 2) + 3) 
Consider the below example: 
mySum [] = 0 
mySum (x:xt) = x + mySum xt 
 
mySum [1,2,3] 
→ 1 + (mySum (2 : 3 : [])) 
→ 1 + (2 + (mySum (3 : []))) 
→ 1 + (2 + (3 + (mySum ([])))) 
→ 1 + (2 + (3 + (0))) 
→ 1 + (2 + (3 + 0)) 
→ 1 + (2 + 3) 
→ 1 + 5 
→ 6 
 
Notice how because there’s recursion, the brackets are right heavy.  
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Type Constructor vs Data Constructor: 
- A type constructor is a function that takes 0 or more types and gives you back a new 

type. If it has zero arguments it is called a nullary type constructor or simply a type. 
Note: All type constructors must start with a capital letter. 

- A data constructor/tag is a function that takes 0 or more values and gives you back a 
new value. If it has zero arguments is called a nullary data constructor or simply a 
constant.  
Note: All data constructors must start with a capital letter. 

- In a data declaration, a type constructor is the thing on the left hand side of the equals 
sign. The data constructor(s) are the things on the right hand side of the equals sign. 
You use type constructors where a type is expected, and you use data constructors 
where a value is expected. 

- Examples: 
1. This is an example of a nullary type constructor with 2 nullary data constructors: 

data Bool = True | False 
2. This is an example of a unary type constructor: 

data Tree a = Tip | Node a (Tree a) (Tree a) 
Here, “a” is a type variable. 

Examples: 
1. Consider the code and output below: 
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The line “data BinaryTree = Empty | Node BinaryTree Integer BinaryTree” means 
that BinaryTree is either Empty or Node BinaryTree Integer BinaryTree. Hence, when we 
output a BinaryTree for insert, we either have to output Empty or Node BinaryTree 
Integer BinaryTree. 
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2. Consider the code and output below: 
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Here, Boolean is a type constructor while T and F are data constructors. As stated 
above, Boolean, T and F must be capitalized. 
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Seq: 
- seq is used for killing lazy evaluation where you deem it unsuitable. 
- It is a built in function. 
- seq is a special function that is used to force expressions to be evaluated. seq evaluates 

the first parameter and passes it to the second parameter. 
- To evaluate “seq x y”: evaluate x to “weak head normal form”, then continue with y. 
- Weak head normal form (WHNF) means: 

- for built-in number types: until you have the number 
- for algebraic data types: until you have a data constructor 
- for functions: until you have a lambda 

- Naturally, “seq x y” is most meaningful when x is something that y will need. 
- E.g. mySumV2, mySumV3 and mySumV4 are used to sum a list. 

 
Evaluation of mySumV2 [1,2,3]: 
 mySumV2 (1 : 2 : 3 : [])  
→ g 0 (1 : 2 : 3 : [])  
→ g (0 + 1) (2 : 3 : [])  
→ g ((0 + 1) + 2) (3 : [])  
→ g (((0 + 1) + 2) + 3) []  
→ ((0 + 1) + 2) + 3  
→ (1 + 2) + 3  
→ 3 + 3  
→ 6 
 
Now, we will use seq. 

 
Evaluation of mySumV3 [1,2,3]: 
g 0 (1 : 2 : 3 : []) 
→ seq 0 (g (0 + 1) (2 : 3 : [])) 
→ g (0 + 1) (2 : 3 : []) 
→ seq a (g (a + 2) (3 : [])) with a = 0 + 1 
→ seq a (g (a + 2) (3 : [])) with a = 1 
→ g (1 + 2) (3 : []) 
→ seq b (g (b + 3) []) with b = 1 + 2 
→ seq b (g (b + 3) []) with b = 3 
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→ g (3 + 3) [] 
→ 3 + 3 
→ 6 
 
We can still decrease number of the iterations: 

 
g 0 (1 : 2 : 3 : []) 
→ seq b (g b (2 : 3 : [])) with b = 0 + 1 
→ seq b (g b (2 : 3 : [])) with b = 1 
→ g 1 (2 : 3 : []) 
→ seq c (g c (3 : [])) with c = 1 + 2 
→ seq c (g c (3 : [])) with c = 3 
→ g 3 (3 : []) 
→ seq d (g d []) with d = 3 + 3 
→ seq d (g d []) with d = 6 
→ g 6 [] 
→ 6 

Fold Functions: 
- Back when we were dealing with recursion, we noticed a theme throughout many of the 

recursive functions that operated on lists. Usually, we'd have an edge case for the empty 
list. We'd introduce the x:xs pattern and then we'd do some action that involves a single 
element and the rest of the list. It turns out this is a very common pattern, so a couple of 
very useful functions were introduced to encapsulate it. These functions are called folds. 
They're sort of like the map function, only they reduce the list to some single value. 

- A fold takes a binary function, a starting value, called an accumulator, and a list to fold 
up. The binary function itself takes two parameters. The binary function is called with the 
accumulator and the first or last element and produces a new accumulator. Then, the 
binary function is called again with the new accumulator and the now new first or last 
element, and so on. Once we've walked over the whole list, only the accumulator 
remains, which is what we've reduced the list to. 

- Folds can be used to implement any function where you traverse a list once, element by 
element, and then return something based on that. Whenever you want to traverse a list 
to return something, chances are you want a fold. That's why folds are, along with maps 
and filters, one of the most useful types of functions in functional programming. 

- Foldl and foldr are two fold functions. 
Foldl: 

- Also called the left fold.  
- It folds the list up from the left side. The binary function is applied between the starting 

value and the head of the list. That produces a new accumulator value and the binary 
function is called with that value and the next element, etc. 
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- E.g. Consider foldl (\acc x -> acc + x) 0 xs, 0 is the accumulator or starting value, xs is 
the list, acc is the accumulator value and x is the first element of the list. 

- E.g. The below functions all take in a list of numbers and sum up the numbers. 

 

 
Here’s the evaluation of mySum [3,5,3,1]: 
→ 0 + 3 [3, 5, 3, 1] 
→ 3 + 5 [5, 3, 1] 
→ 8 + 3 [3, 1] 
→ 11 + 1 [1] 
→ 12 
The bolded dark green numbers represent the accumulator value. 

- Note: Instead of (\acc x -> acc + x), we can use (+) instead. 
- Note: In the second example, we can omit the xs as the parameter because calling foldl 

(+) 0 will return a function that takes a list. Generally, if you have a function like foo a = 
bar b a, you can rewrite it as foo = bar b, because of currying. 

- E.g. 

 

 
Foldr: 

- The right fold, foldr, works in a similar way to the left fold, only the accumulator eats up 
the values from the right. Also, the left fold's binary function has the accumulator as the 
first parameter and the current value as the second one (so \acc x -> ...), the right fold's 
binary function has the current value as the first parameter and the accumulator as the 
second one (so \x acc -> ...). It kind of makes sense that the right fold has the 
accumulator on the right, because it folds from the right side. 
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- E.g. 

 

 
Here’s the evaluation of mySum3 [3,5,3,1]: 
→ 0 + 1 [3, 5, 3, 1] 
→ 1 + 3 [3, 5, 3] 
→ 4 + 5 [3, 5] 
→ 9 + 3 [3] 
→ 12 
The bolded dark green numbers represent the accumulator value. 

- One big difference is that right folds work on infinite lists, whereas left ones don't. To put 
it plainly, if you take an infinite list at some point and you fold it up from the right, you'll 
eventually reach the beginning of the list. However, if you take an infinite list at a point 
and you try to fold it up from the left, you'll never reach an end. 

- Note: If you have foldr op z (xs:xt) 
where 
    z = … 
    op x r = … 

z is the starting value, x is the first element/value of the list and r = foldr op z xt. 
Foldl1 and foldr1: 

- The foldl1 and foldr1 functions work much like foldl and foldr, only you don't need to 
provide them with an explicit starting value. They assume the first or last element of the 
list to be the starting value and then start the fold with the element next to it. With that in 
mind, the sum function can be implemented like so: sum = foldl1 (+). Because they 
depend on the lists they fold up having at least one element, they cause runtime errors if 
called with empty lists. foldl and foldr, on the other hand, work fine with empty lists. 
When making a fold, think about how it acts on an empty list. If the function doesn't 
make sense when given an empty list, you can probably use a foldl1 or foldr1 to 
implement it. 

Type Classes: 
- In Haskell, every statement is considered as a mathematical expression and the            

category of this expression is called as a Type. You can say that "Type" is the data type                  
of the expression used at compile time. 

- In a generic way, Type can be considered as a value, whereas Type Class can be                
considered as a set of similar kinds of Types. 

- A “type class” declares a group of overloaded operations (“methods”).  
- Syntax: 

class ClassName typeVar where 
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  methodName :: type sig containing typeVar 
  -- Optional: default implementations 

- Example: Methods == and /= are grouped under the Eq class. Its declaration in the 
standard library goes like this: 
 
class Eq a where 
    (==), (/=) :: a -> a -> Bool 
    -- default implementation for (==) 
    x == y = not (x /= y) 
    -- default implementation for (/=) 
    x /= y = not (x == y) 
    -- default implementations are deliberately circular so you just have to 
    -- implement one of them to break the cycle 
The role of type variable “a” is a placeholder for Integer, Char, etc. 
 
To implement these methods for a type, e.g., the standard library has this for Bool: 

instance Eq Bool where    -- (so a=Bool here) 
    False == False    = True 
    True == True      = True 
    _ == _            = False 
 
    -- default implementation for (/=) takes hold 

We say “Bool is an instance of Eq”. 
- Note: When you do “instance Num a where …”, you are making “a” a Num type. 
- WARNING: 

1. A class is not a type. Eq is not a type. These are illegal: 
foo :: Eq -> Eq -> Bool 
bar :: Eq a -> Eq a -> Bool 

2. A type is not a “subclass”. Bool is not a “subclass” of Eq. 
- Method types outside classes look like this: 

(==) :: Eq a => a -> a -> Bool 
The additional “Eq a =>” is marked for polymorphic but the user's choice of a must be an 
instance of Eq. This marker also appears when you write polymorphic functions using 
the methods. 

- Type classes use => while types use ->. 
I.e. function :: (Type Class) => (type 1) -> … -> (type n) 
E.g. 
sum :: (Num a) => a -> a -> a 

- Built in Types and Type Classes: 
- Int: Int is a type representing the Integer types data. Every whole number within 

the range of 2147483647 to -2147483647 comes under the Int type class. 
- Integer: Integer can be considered as a superset of Int. This value is not 

bounded by any number, hence an Integer can be of any length without any 
limitation. 

- Float: Float is a floating point number with single precision at the end. 
- Double: Double is a floating point number with double precision at the end. 
- Bool: Bool is a Boolean Type. It can be either True or False. 
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- Char: Char represents Characters. Anything within a single quote is considered 
as a Character. 

- EQ: EQ type class is an interface which provides the functionality to test the 
equality of an expression. Any Type class that wants to check the equality of an 
expression should be a part of this EQ Type Class. Whenever we are checking 
any equality using any of the types mentioned above, we are actually making a 
call to the EQ type class. EQ is used for == or !=. 

- Ord: Ord is another type class which gives us the functionality of ordering. Like 
EQ interface, Ord interface can be called using ">", "<", "<=", ">=", "compare". An 
instance of Ord is also an instance of Eq. We say “Ord is a subclass of Eq”, but 
beware that this is unrelated to OOP subclasses. 

- Show: Show is a type class that has a functionality to print its argument as a 
String. Whatever may be its argument, it always prints the result as a String. 

- Read: Read is a type class that does the same thing as Show, but it won’t print 
the result in String format. 

- Enum: Enum is another Type class which enables the sequential or ordered 
functionality in Haskell. 

- Bounded: All the types having upper and lower bounds come under this Type 
Class. 
E.g. 

 
- Number operations are grouped into several type classes: 

- Num: 
- some methods: +, -, *, abs 
- instances: all number types 

- Integral: 
- some methods: div, mod 
- instances: Int, Integer 

- Fractional: 
- some methods: /, recip 
- instances: Rational, Float, Double, Complex a 

- E.g. Why is the following a type error? 
let xs :: [Double] 
    xs = [1, 2, 3] 
in sum xs / length xs 
 
Answer: 
sum xs :: Double, but length xs :: Int 
(/) wants the two operands to be of the same type. 
How to fix: sum xs / fromIntegral (length xs) or use realToFrac 
fromIntegral :: (Integral a, Num b) => a -> b 
realToFrac :: (Real a, Fractional b) => a -> b 
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- Often it is straightforward but boring to write instances for these classes, so the 
computer offers to auto-gen for you. However, restrictions apply. You can request it at 
the definition of your algebraic data type like this: 
data MyType = ... deriving (Eq, Ord, Bounded, Enum, Show, Read) 

Foldable: 
- The Foldable type class provides a generalisation of list folding (foldr and friends) and 

operations derived from it to arbitrary data structures. Besides being extremely useful, 
Foldable is a great example of how monoids can help formulating good abstractions. 

- The purpose of this section is twofold: 
1. This explains why some of the library functions for lists have types like 

length :: Foldable t => t a -> Int 
instead of the simpler 
length :: [a] -> Int 

2. This familiarizes you with things like “Foldable t” and how it is not “Foldable (t a)”. 
- E.g. 

 
- A few library functions that consume a list and compute a “summary” are: 

- length :: [a] -> Int 
- sum :: Num a => [a] -> a 
- minimum :: Ord a => [a] -> a 

-- assumes non-empty list 
- foldr :: (a -> b -> b) -> b -> [a] -> b 

These make sense for other data structures representing sequences too, not just linked 
lists. 
E.g. sum should be used for vector and seq, too. 
sum :: Num a => Vector a -> a 
-- Vector is an array, 0-based Int index. Third-party but popular library. 
 
sum :: Num a => Seq a -> a 
-- Seq is a middle ground between array and linked list, 
-- O(1) prepend and append, log time random access. 
 
Haskell supports this generalization with a type class: 
class Foldable t where 
    length :: t a -> Int    -- implicitly ∀a, similarly below 
    sum :: Num a => t a -> a 
    minimum :: Ord a => t a -> a 
    foldr :: (a -> b -> b) -> b -> t a -> b    -- implicitly ∀a,b 
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    -- and others 
 
Note: It is not “class Foldable (t a)”. Likewise, instances go like “instance Foldable []”, 
not “instance Foldable ([] a)”. 

Good type classes and bad type classes: 
- A good type class has these traits: 

- You have multiple instances. 
- Methods satisfy useful laws or expectations, therefore can be used to build useful 

general algorithms. 
- Example: Ord: <= is reflexive, transitive, anti-symmetric, total. These laws are the 

basis of sorting algorithms and binary search tree algorithms. 
- Bad type class: Created for no further benefit than: 

- Common method name. 
- Procrastinating writing actual code, procrastinating making up your mind what to 

do. 
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Fold: 
- A fold takes a binary function, a starting value, called the accumulator, and a list to fold 

up. The binary function itself takes two parameters. The binary function is called with the 
accumulator and the first or last element and produces a new accumulator. Then, the 
binary function is called again with the new accumulator and the now new first or last 
element, and so on. Once we've walked over the whole list, only the accumulator 
remains, which is what we've reduced the list to. 

Foldl: 
- Here’s the function definition and implementation of foldl: 

foldl :: (a -> b -> a) -> a -> [b] -> a 
-- if the list is empty, the result is the initial value; else 
-- we recurse immediately, making the new initial value the result 
-- of combining the old initial value with the first element. 
foldl f z []     = z  
foldl f z (x:xs) = foldl f (f z x) xs 

- Note: foldl consumes the list left to right and evaluates from left to right. 
- With foldl, the binary function has the accumulator as the first parameter and the current 

value as the second one. 
- E.g. foldl (-) 0 [1..10] = -55 

foldl (-) 0 [1..10] 
→ foldl (-) (0 - 1) [2..10] 
→ foldl (-) ((0-1) - 2) [3..10] 
→ foldl (-) (((0-1) - 2) - 3) [4..10] 
→ foldl (-) ((((0-1) - 2) - 3) - 4) [5..10] 
→ foldl (-) (((((0-1) - 2) - 3) - 4) - 5) [6..10] 
→ foldl (-) ((((((0-1) - 2) - 3) - 4) - 5) - 6) [7..10] 
→ foldl (-) (((((((0-1) - 2) - 3) - 4) - 5) - 6) - 7) [8..10] 
→ foldl (-) ((((((((0-1) - 2) - 3) - 4) - 5) - 6) - 7) - 8) [9..10] 
→ foldl (-) (((((((((0-1) - 2) - 3) - 4) - 5) - 6) - 7) - 8) - 9) [10] 
→ foldl (-) ((((((((((0-1) - 2) - 3) - 4) - 5) - 6) - 7) - 8) - 9) - 10) [] 
→ ((((((((((0-1) - 2) - 3) - 4) - 5) - 6) - 7) - 8) - 9) - 10) 
→ (((((((((-1 - 2) - 3) - 4) - 5) - 6) - 7) - 8) - 9) - 10) 
→ ((((((((-3 - 3) - 4) - 5) - 6) - 7) - 8) - 9) - 10) 
→ (((((((-6 - 4) - 5) - 6) - 7) - 8) - 9) - 10) 
→ ((((((-10 - 5) - 6) - 7) - 8) - 9) - 10) 
→ (((((-15 - 6) - 7) - 8) - 9) - 10) 
→ ((((-21 - 7) - 8) - 9) - 10) 
→ (((-28 - 8) - 9) - 10) 
→ ((-36 - 9) - 10) 
→ (-45 - 10) 
→ -55 
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Foldr: 
- Here’s the function definition and implementation of foldr: 

foldr :: (a -> b -> b) -> b -> [a] -> b 
-- if the list is empty, the result is the initial value z; else 
-- apply f to the first element and the result of folding the rest 
foldr f z []     = z  
foldr f z (x:xs) = f x (foldr f z xs)  

- Note: foldr consumes the list left to right but evaluates from right to left. 
- With foldl, the binary function has the current value as the first parameter and the 

accumulator as the second one. 
- E.g. foldr (-) 0 [1..10] = -5 

foldr (-) 0 [1..10] 
→ 1 - (foldr (-) 0 [2..10]) 
→ 1 - (2 - (foldr (-) 0 [3..10])) 
→ 1 - (2 - (3 - (foldr (-) 0 [4..10]))) 
→ 1 - (2 - (3 - (4 - (foldr (-) 0 [5..10])))) 
→ 1 - (2 - (3 - (4 - (5 - (foldr (-) 0 [6..10]))))) 
→ 1 - (2 - (3 - (4 - (5 - (6 - (foldr (-) 0 [7..10])))))) 
→ 1 - (2 - (3 - (4 - (5 - (6 - (7 - (foldr (-) 0 [8..10]))))))) 
→ 1 - (2 - (3 - (4 - (5 - (6 - (7 - (8 - (foldr (-) 0 [9..10])))))))) 
→ 1 - (2 - (3 - (4 - (5 - (6 - (7 - (8 - (9 - (foldr (-) 0 [10]))))))))) 
→ 1 - (2 - (3 - (4 - (5 - (6 - (7 - (8 - (9 - (10 - (foldr (-) 0 [])))))))))) 
→ 1 - (2 - (3 - (4 - (5 - (6 - (7 - (8 - (9 - (10))))))))) 
→ 1 - (2 - (3 - (4 - (5 - (6 - (7 - (8 - (-1)))))))) 
→ 1 - (2 - (3 - (4 - (5 - (6 - (7 - (9))))))) 
→ 1 - (2 - (3 - (4 - (5 - (6 - (-2)))))) 
→ 1 - (2 - (3 - (4 - (5 - (8))))) 
→ 1 - (2 - (3 - (4 - (-3)))) 
→ 1 - (2 - (3 - (7))) 
→ 1 - (2 - (-4)) 
→ 1 - (6) 
→ -5 
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Functor: 
- Functor in Haskell is a kind of functional representation of different types which can be 

mapped over. It is a high level concept of implementing polymorphism. Types such as 
List, Map, Tree, etc. are instances of the Haskell Functor. 

- Functor is a function which takes a function and returns another function. 
- The Functor typeclass is basically for things that can be mapped over. 
- A Functor is an inbuilt class with a function definition like: 

class Functor f where  
   fmap :: (a -> b) -> f a -> f b → fmap takes a function and a functor and applies the 
function on the functor. 

- Recall the map function. map f [x, y, z] = [f x, f y, f z] 
The map function can be applied to nothing more than a list of values (where values are 
of any type) whereas the fmap function can be applied to many more data types, all of 
which belong to the functor class (e.g. maybe, tuples, lists, etc.). Since the "list of values" 
data type is also a functor, because it provides an implementation for it, then fmap can 
be applied to is as well producing the very same result as map. In fact, map is just a 
fmap that works only on lists. The difference between map and fmap lies in their usage. 
Functor enables us to implement some more functionalists in different data types, like 
"Just" and "Nothing". 

 
- E.g. Consider the below code. 

 
Notice that map and fmap produce the same results on a list, but map doesn’t work for 
types such as “Just” or “Nothing”, while fmap does.  
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- This is the standard library map function (map f [x, y, z] = [f x, f y, f z]). Here’s an fmap 
implementation: 
fmap_List :: (a -> b) -> [] a -> [] b 
-- "[] a" means "[a]" in types. 
fmap_List f [] = [] 
fmap_List f (x:xs) = f x : fmap_List f xs 

- This is the definition of the Maybe type from the standard library:  
data Maybe a = Nothing | Just a 
Note: There are two perspectives for the Maybe type: 

- It's like a list of length 0 or 1. 
- It models having two possibilities: “no answer” and “here's the answer”. 

Here’s an fmap implementation: 
fmap_Maybe :: (a -> b) -> Maybe a -> Maybe b 
fmap_Maybe f Nothing = Nothing 
fmap_Maybe f (Just a) = Just (f a) 

- This is the definition of the Either type from the standard library: 
data Either e a = Left e | Right a 
It's like Maybe, but the “no answer” case carries extra data, perhaps some kind of 
reason for why “no answer”. 
Here’s an fmap implementation: 
fmap_Either :: (a -> b) -> (Either e) a -> (Either e) b 
fmap_Either f (Left e) = Left e 
fmap_Either f (Right a) = Right (f a) 

- Note: fmap must satisfy some axioms/laws: 
1. Identity axiom/Functor Identity: 

- The first functor law states that if we map the id function over a functor, 
the functor that we get back should be the same as the original functor. If 
we write that a bit more formally, it means that fmap id = id. So 
essentially, this says that if we do fmap id over a functor, it should be the 
same as just calling id on the functor. Id is the identity function, which just 
returns its parameter unmodified. It can also be written as \x -> x. 

- E.g. 

 
2. fmap fusion/fmap is a homomorphism: 

- The second law says that composing two functions and then mapping the 
resulting function over a functor should be the same as first mapping one 
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function over the functor and then mapping the other one. Formally 
written, that means that fmap (f . g) = fmap f . fmap g. Or to write it in 
another way, for any functor F, the following should hold:  
fmap (f . g) F = fmap f (fmap g F). 

- Doing fmap g (fmap f xs) should get the same result as doing  
fmap (\x -> g (f x)) xs 
I.e. 
fmap g . fmap f = fmap (g . f) 

- Note: We can do fmap Just [1]. This is because types are functions. 
E.g. 

 

 
- Functor on its own does not have much basic practical use, apart from providing a 

common name “fmap”, but it is much more useful when combined with the Applicative 
and Monad methods. It also has an advanced practical use. On the other hand, Functor 
is extremely important in category theory. 

Applicative: 
- An Applicative Functor is a normal Functor with some extra features provided by the 

Applicative Type Class. It is found in the Control.Applicative module and to use it, we 
need to do import Control.Applicative. 

- The class is defined like such: 
class (Functor f) => Applicative f where  
    pure :: a -> f a  → Pure takes a value and returns a functor of that value. 
    (<*>) :: f (a -> b) -> f a -> f b → <*> takes a functor with a function in it and another 
    functor and applies the function to the second functor. 
    liftA2 :: (a -> b -> c) -> f a -> f b -> f c → liftA2 takes a function and 2 functors and 
    applies the function on the 2 functors. 
    -- And default implementations because <*> and liftA2 are equivalent. 
    liftA2 f as bs = fmap f as <*> bs 
    fs <*> as = liftA2 (\f a -> f a) fs as 
    -- And a couple of other methods with easy default implementations. 
 
Looking at the first line, it states the definition of the Applicative class and it also 
introduces a class constraint. It says that if we want to make a type constructor part of 
the Applicative typeclass, it has to be in Functor first. That's why if we know that if a type 
constructor is part of the Applicative typeclass, it's also in Functor, so we can use fmap 
on it. 
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The first method it defines is called pure. Its type declaration is pure :: a -> f a. “f” plays 
the role of our applicative functor instance here. pure should take a value of any type 
and return an applicative functor with that value inside it. We take a value and we wrap it 
in an applicative functor that has that value as the result inside it. 
 
pure for [], Maybe, and Either e work as follows: 
-- [] version 
pure a = [a] 
 
-- Maybe version 
pure a = Just a 
 
-- Either e version 
pure a = Right a 

 
pure plays two roles: 

1. The degenerate case when you have a 0-ary function and 0 lists, kind of. 
2-ary, liftA2 :: (t1 -> t2 -> a) -> f t1 -> f t2 -> f a 
1-ary, fmap :: (t1 -> a)        > f t1         -> f a 
0-ary, pure :: a    -> f a 

2. fmap can be derived from pure and <*>. 
I.e. fmap f xs = pure f <*> xs 

 
The second function it defines is <*>. It has a type declaration of f (a -> b) -> f a -> f b. 
<*> is sort of a beefed up fmap. Whereas fmap takes a function and a functor and 
applies the function inside the functor, <*> takes a functor that has a function in it and 
another functor and sort of extracts that function from the first functor and then maps it 
over the second one. 
Note: We can use lambda functions with <*>. 
E.g. 

 
 
The third function it defines is liftA2. liftA2 just applies a function between two 
applicatives, hiding the applicative style that we've become familiar with. The reason 
we're looking at it is because it clearly showcases why applicative functors are more 
powerful than just ordinary functors. With ordinary functors, we can just map functions 
over one functor. But with applicative functors, we can apply a function between several 
functors. It's also interesting to look at this function's type as (a -> b -> c) -> (f a -> f b -> 
f c). When we look at it like this, we can say that liftA2 takes a normal binary function 
and promotes it to a function that operates on two functors. 
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E.g. 
liftA2 (+) [1,2,3] [4,5,6] 
= [1+4, 1+5, 1+6, 2+4, 2+5, 2+6, 3+4, 3+5, 3+6] 
= [5,6,7,6,7,8,7,8,9] 

 
 
E.g. 
liftA2 (-) [10,20,30] [1,2,3] 
= [10-1, 10-2, 10-3,  20-1, 20-2, 20-3,  30-1, 30-2, 30-3] 
= [9,8,7,19,18,17,29,28,27] 

 
 
Note: We can use lambda functions with liftA2. 
E.g. 

 
 

- Here is the Applicative instance implementation for Maybe. 
instance Applicative Maybe where  
    pure = Just  
    Nothing <*> _ = Nothing  
    (Just f) <*> something = fmap f something 
 
First off, pure. We said earlier that it's supposed to take something and wrap it in an 
applicative functor. We wrote pure = Just, because value constructors like Just are 
normal functions. We could have also written pure x = Just x. 
 
Next up, we have the definition for <*>. We can't extract a function out of a Nothing, 
because it has no function inside it. So we say that if we try to extract a function from a 
Nothing, the result is a Nothing.  
 
If the first parameter is not a Nothing, but a Just with some function inside it, we say that 
we then want to map that function over the second parameter. This also takes care of 
the case where the second parameter is Nothing, because doing fmap with any function 
over a Nothing will return a Nothing. 
 
So for Maybe, <*> extracts the function from the left value if it's a Just and maps it over 
the right value. If any of the parameters is Nothing, Nothing is the result. 
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E.g. 
Notice that if there’s Nothing on either side of the <*>, the result is nothing. 

 
 
Notice that the 2 statements below give the same result. 

 
 

- The Applicative methods should satisfy the following axioms: 
1. Applicative subsumes Functor 

fmap f xs = pure f <*> xs 
2. Applicative left-identity 

pure id <*> xs = xs 
-- Compare with fmap identity!  fmap id xs = xs 

3. Applicative associativity, composition 
gs <*> (fs <*> xs) = ((pure (.) <*> gs) <*> fs) <*> xs 
       = (liftA2 (.) gs fs) <*> xs 
-- Analogy: g (f x) = (g . f) x 
-- It may help to elaborate the types. Assume: 
--     xs :: f a 
--     fs :: f (a -> b) 
--     gs :: f (b -> c) 
--     (.) :: (b -> c) -> (a -> b) -> (a -> c) 
-- Try to determine the types of the subexpressions 
 

4. pure fusion, pure is a homomorphism 
pure f <*> pure x = pure (f x) 
fmap f (pure x) = pure (f x) 

5. pure interchange, almost right-identity 
fs <*> pure x = pure (\f -> f x) <*> fs 
                      = fmap (\f -> f x) fs 

- The first corollary is that the Applicative axioms imply the Functor axioms given fmap f xs 
= pure f <*> xs.  
Functor identity is immediate from Applicative left-identity. To deduce fmap fusion: 
fmap g (fmap f xs)                           in Applicative terms 
= pure g <*> (pure f <*> xs)                   associativity 
= ((pure (.) <*> pure g) <*> pure f) <*> xs    pure fusion 
= (pure ((.) g) <*> pure f) <*> xs             pure fusion 
= pure ((.) g f) <*> xs                        infix notation 
= pure (g . f) <*> xs                          in Functor terms 
= fmap (g . f) xs 
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- The second corollary is that 
liftA3 (\x y z -> g x (f y z)) xs ys zs 
can be done by the following two equivalent ways: 

1. (fmap (\x y z -> g x (f y z)) xs <*> ys) <*> zs 
2.  fmap g xs <*> (fmap f ys <*> zs) 
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Fmap: 
- fmap :: Functor f => (a -> b) -> f a -> f b 
- This means that fmap takes a function and a functor and applies the function over the 

functor. 
- E.g. 

 
- Can be thought of as liftA1. This will be explained below. 

<*>: 
- Also called ap. 
- (<*>) :: f (a -> b) -> f a -> f b 
- <*> takes a functor with a function in it and another functor and applies the function to 

the second functor. 
- E.g. 

 
- Note: You need to do import Control.Applicative to use ap. 

LiftA2: 
- liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c 
- If you compare the above line with fmap, you’ll see that they’re very similar, but fmap 

takes 1 functor while applicative takes 2. Furthermore, the function fmap uses only takes 
in 1 argument, while the function liftA2 uses takes 2 arguments. This is why we can think 
of fmap as liftA1. 

- E.g. 
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- We can use fmap and <*> to implement liftA2. 
Here’s an implementation of fmap, pure, <*> and liftA2 for the functor Maybe. 

 
Note that for liftA2, we’re not using fmap and <*> to implement it. 
Here’s how we can use fmap and <*> to implement liftA2. 
liftA2 f xs ys = (fmap f xs) <*> ys 
E.g. 

 
The reason why liftA2 f xs ys = (fmap f xs) <*> ys is because fmap applies the 
function, f, on xs, so xs is a functor with a function in it, and then <*> applies that 
function onto ys. 

LiftA3: 
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d 
- This is similar to liftA2, but it takes 3 arguments instead of 2. 
- We can implement liftA3 using fmap and <*>. 

liftA3 f xs ys zs = (fmap f xs) <*> ys <*> zs 
E.g. 

 
- We can implement liftA3 using liftA2 and <*>. 

liftA3 f xs ys zs = (liftA2 f xs ys) <*> zs 
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E.g. 

 
This is because (fmap f xs) <*> ys is equivalent to liftA2 f xs ys. 

In general: 
- If you have liftAn, where n > 1, you can implement in the following way: 

1. liftAn f a b c … z = (fmap f a) <*> b <*> c … <*> z 
2. liftAn f a b c … y z = (liftA(n-1) f a b c … y) <*> z 
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Parameterized “container” types as effect types: 
- Think of [], Maybe, Either e as types of effects or effectful programs, not always as types 

of data structures. 
- “Effect” is very broad and usually not given a precise definition, but if you know the 

phrase “function with a side-effect”, that's the idea. In the Haskell culture, it refers to 
things a mathematical function cannot do, e.g. no answer, multiple answers, accessing 
state variables, performing I/O—the latter two lead to getting different answers at 
different times. 

- f :: Int -> String in Haskell means that f 4 :: String is the same string every time, without 
effect. If some specific kind of effect is desired, we make a parameterized type E to 
Maybe or [] to represent it and change types to f :: Int -> E String, so f 4 :: E String 
does not have to give the same string every time, instead just the same “effectful action” 
every time. 

- It suffices to focus on “E String” (so without “Int ->”) and think of it as the type of effectful 
programs that give string answers. E.g., if m1, m2 :: Maybe String, think of them as two 
programs that give string answers (the effect is that it could fail). 

- In this frame of mind, the methods of Functor, Applicative, and later Monad are 
connectives—combining basic effectful programs into complex ones. E.g. liftA2 (++) m1 
m2 combines m1 and m2. 

- Consider “Maybe”: 
- foo :: Maybe Int now means a program that may succeed and return an Int 

(conveyed by Just), or may fail (conveyed by Nothing). 
- Suppose f :: Int -> String. 
- fmap f foo :: Maybe String now means a program that runs foo, but converts 

the answer, if any, using f. 
- pure 4 :: Maybe Int now means a program that succeeds and returns 4. 

Note that it avoids using Maybe's effect of failure. 
- Suppose bar :: Maybe Int. 
- liftA2 (+) foo bar :: Maybe Int now means a composite program that runs foo to 

try to obtain a number. If running foo is successful, it runs bar. If that is 
successful too, the overall answer is the sum. 

- E.g. I have a recipMay function for reciprocals, but to better handle 
division-by-zero, I use Maybe to convey successes and failures. I then use it to 
write an addRecip function to add two reciprocals, again involving Maybe in 
anticipation of failure. This is my first version: 
recipMay :: Double -> Maybe Double 
recipMay a | a == 0 = Nothing 
                    | otherwise = Just (1 / a)    -- or: pure (1 / a) 
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addRecipV1 x y = 
    case recipMay x of 
      Nothing -> Nothing 
      Just x_recip -> case recipMay y of 
        Nothing -> Nothing 
        Just y_recip -> Just (x_recip + y_recip) 
 
This is my second version. It uses the new way of thinking: 
recipMay :: Double -> Maybe Double 
recipMay a | a == 0 = Nothing 
         | otherwise = Just (1 / a)    -- or: pure (1 / a) 
 
addRecipV2 :: Double -> Double -> Maybe Double 
addRecipV2 x y = liftA2 (+) (recipMay x) (recipMay y) 

Monads: 
- Monads are just beefed up applicative functors. 
- A monad is a way to structure computations in terms of values and sequences of 

computations using those values. Monads allow the programmer to build up 
computations using sequential building blocks, which can themselves be sequences of 
computations. The monad determines how combined computations form a new 
computation and frees the programmer from having to code the combination manually 
each time it is required. 

- It is useful to think of a monad as a strategy for combining computations into more 
complex computations. 

- Monads chain operations in some specific, useful way. 
- Monads apply a regular function to a wrapped value and return a wrapped value. This is 

similar to what a functor does. The difference between a monad and a functor is that with 
monads, the functions aren’t expecting a wrapped value. 

- E.g. Consider the code and output below: 

 
What if we wanted to pass in (Just 10) to half? 

 
It gives an error. 
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However, if we do (Just 10) >>= half, we get back Just 5, as shown below. 

 
In this example, the function, half, isn’t expecting a wrapped value of (Just 10). We did 
half x = …, not half (Just x) = …. However, by using >>=, we were able to apply (Just 10) 
to the half function. Here’s what >>= is doing behind the scenes: 

- When we do “Just 10 >>= …”, the >>= takes the 10, only. 
- Hence, when we did (Just 10) >>= half, it was like doing half 10. 

- We can also chain monads. 
E.g. 

 
- The monad class is defined like this: 

class Applicative m => Monad m where 
    return :: a -> m a  
  
    (>>=) :: m a -> (a -> m b) -> m b → >>= takes in a monadic value and a function that 
    takes in a regular value but outputs a monadic value and applies the function on the 
    monadic value. 
    E.g. Suppose you have something like Just x >>= \b -> …, here “b” is not wrapped in 
    “Just”. This is because the lambda function takes a regular value. 
 
    (>>) :: m a -> m b -> m b  
    x >> y = x >>= \_ -> y  
  
    fail :: String -> m a  
    fail msg = error msg  
 
The first function that the Monad type class defines is return. It's the same as pure, only 
with a different name. Its type is (Monad m) => a → m a. It takes a value and puts it in a 
minimal default context that still holds that value. In other words, it takes something and 
wraps it in a monad. It always does the same thing as the pure function from the 
Applicative type class.  
Note: return is nothing like the return that's in most other languages. It doesn't end 
function execution or anything, it just takes a normal value and puts it in a context. 
It is here for historical reasons (because Applicative is more recent). Do not think of 
return in terms of control flow. It does not exit anything. 
 
The next function is >>=, or bind. It's like function application, only instead of taking a 
normal value and feeding it to a normal function, it takes a monadic value (a value with a 
context) and feeds it to a function that takes a normal value but returns a monadic value. 
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Next up, we have >>. It’s default implementation is foo >> bar = foo >>= \_ -> bar. It 
comes in handy when you don't need foo's answer, only its effect. We call this operator 
"then". We use this function when we want to perform actions in a certain order, but don't 
care what the result of one is. Consider the example below: 

 
The final function of the Monad type class is fail. We never use it explicitly in our code. 
Instead, it's used by Haskell to enable failure in a special syntactic construct for monads. 

- The Monad methods satisfies these axioms: 
1. Left Identity Law: This law states that if we take a value, put it in a default 

context with return and then feed it to a function by using >>=, it's the same as 
just taking the value and applying the function to it. To put it formally: 
return x >>= k  =  k x 
E.g. 

 
Notice that both statements get the same result. 

2. Right Identity Law: This law states that if we have a monadic value and we use 
>>= to feed it to return, the result is our original monadic value. Formally:  
m >>= return = m 
E.g. 

 
3. Associativity: This law says that when we have a chain of monadic function 

applications with >>=, it shouldn't matter how they're nested. Formally written: 
Doing (m >>= f) >>= g is just like doing m >>= (\x -> f x >>= g) 
 
Associative laws justify re-grouping. This is important for many refactoring and 
implementing long chains by recursion. 

- Monad subsumes Applicative and Functor. From return and >>= we can get the methods 
of Applicative and Functor: 
fmap f xs  =  xs >>= (\x -> return (f x)) 
liftA2 op xs ys  =  xs >>= (\x -> ys >>= (\y -> return (op x y))) 
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- Monads need to use both applicative and functor. 
E.g. Consider the code and output below. 

 
Now, if I add the applicative and functor instances, then I don’t get that compilation error. 
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- Examples of Maybe2: 
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State Monad: 
- The state monad is a built-in monad in Haskell that allows for chaining of a state 

variable through a series of function calls, to simulate stateful code. It is defined as: 
newtype State s a = State { runState :: (s -> (a,s)) } 

- The Haskell type State describes functions that consume a state and produce both a 
result and an updated state, which are given back in a tuple. 

- A few basic operations are provided below. Furthemore, “State s” is an instance of 
Functor, Applicative, and Monad, so you have connectives to chain up basic operations 
too. 

1. -- "get" reads and returns the current value of the state variable. 
get :: State s s 
get = State (\s -> (s,s)) 
 

2. -- "put s1" sets the state variable to s1.  It returns the 0-tuple because there 
-- is no information to return. 
put :: s -> State s () 
put newState = State (\s -> (newState, ())) 
 

3. -- functionize prog s0 runs prog starting with initial state value s0 and gives 
-- you the final answer.  
functionize :: State s a -> s -> a 

- E.g. We want to build a binary tree out of given elements, inorder, balanced.  
I.e. buildTree [a, b, c, d, e, f, g] means at d, which is the root, recursively create a,b,c in 
left subtree, and e,f,g in right subtree. We need to count length for halving. A 
non-obvious but linear-time strategy is: 

- Count length just once. 
- State variable holds unused elements (initially all). 
- Recursive helper takes parameter n, uses the first n elements from state var to 

build tree. Algorithm: 
- Split n into n = m1 + 1 + m2, m1 is left subtree size, m2 is right subtree 

size, and 1 element for the middle node. 
- Recursive call: build tree of m1 elements, this will be the left subtree. 
- Take out one element from state var, this will be for the middle node. 
- Recursive call: build tree of m2 elements, this will be the right subtree. 
- Compose the middle node, it's my answer 

Here’s the code: 
-- Recall: data BinTree a = BTNil | BTNode a (BinTree a) (BinTree a) 
 
-- buildTreeHelper n: Use n elements from [a] state var to build tree. 
-- Precondition: n <= length of state var. 
buildTreeHelper :: Int -> State [a] (BinTree a) 
buildTreeHelper 0 = pure BTNil 
buildTreeHelper n = 
    buildTreeHelper m1         -- Make left subtree, m1 elements, call it lt. 
    >>= \lt -> get 
    >>= \(x:xt) -> put xt      -- Which elements remaining? Take one for myself. 
    >> buildTreeHelper m2      -- Make right subtree, m2 elements, call it rt. 
    >>= \rt -> pure (BTNode x lt rt) -- Put it together, this is my answer. 
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  where 
    n' = n - 1 
    m1 = div n' 2 
    m2 = n' - m1 
 
buildTree :: [a] -> BinTree a 
buildTree xs = functionize (buildTreeHelper (length xs)) xs 
-- Whole list for initial state. Use all to build tree. 
 
In the example above,  
>>= \lt -> get 
>>= \(x:xt) -> put xt 
you need to use bind, >>=, to get the return value of get. In this case, (x:xt) is the return 
value of get. 

- The basic idea of state monad is to have a state transition function instead, like s→s, 
and have some starter function, functionize, that feeds it the initial value. However, we 
also want it to give an answer and not a state. So s→(s,a) is a function from the old-state 
to a pair of the new-state and answer. 

- E.g. 
data State s a = MkState (s -> (s, a)) 
 
-- Unwrap MkState. 
deState :: State s a -> s -> (s, a) 
deState (MkState stf) = stf 
 
functionize :: State s a -> s -> a 
functionize prog s0 = snd (deState prog s0) 
 
get :: State s s 
get = MkState (\s0 -> (s0, s0)) 
-- old state = s0, new state = old state = s0, answer s0 too. 
 
put :: s -> State s () 
put s = MkState (\s0 -> (s , ())) 
-- ignore old state, new state = s, answer the 0-tuple (). 
 
instance Functor (State s) where 
    -- fmap :: (a -> b) -> State s a -> State s b 
    fmap f (MkState stf) = MkState 
        (\s0 -> 
           -- Goal: Like stf but use f to convert a to b 
           -- old state = s0, give to stf for new state s1 and answer a 
           case stf s0 of (s1, a) -> 
           -- overall new state is also s1, but change answer to f a 
                              (s1, f a)) 
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testStateFunctor = deState (fmap length program) 10 
  where 
    program :: State Integer String 
    program = MkState (\s0 -> (s0+2, "hello")) 
-- should give (12, 5) 
 
instance Applicative (State s) where 
    -- pure :: a -> State s a 
    -- Goal: Give the answer a and try not to have an effect. 
    -- "effect" for State means state change. 
    pure a = MkState (\s0 -> (s0, a)) 
    -- so new state = old state 
 
    -- liftA2 :: (a -> b -> c) -> State s a -> State s b -> State s c 
    -- 
    -- State transition goal: 
    --                  overall old state 
    -- --1st-program--> intermediate state 
    -- --2nd-program--> overall new state 
    -- 
    -- (Why not the other order? Actually would be legitimate, but we usually 
    -- desire liftA2's order to be consistent with >>='s order.) 
    liftA2 op (MkState stf1) (MkState stf2) = MkState 
        (\s0 -> 
           -- overall old state = s0, give to stf1 
           case stf1 s0 of { (s1, a) -> 
           -- intermediate state = s1, give to stf2  
           case stf2 s1 of { (s2, b) -> 
           -- overall new state = s2 
           -- overall answer = op a b 
           (s2, op a b) }} ) 
 
testStateApplicative = deState (liftA2 (:) prog1 prog2) 10 
  where 
    prog1 :: State Integer Char 
    prog1 = MkState (\s0 -> (s0+2, 'h')) 
    prog2 :: State Integer String 
    prog2 = MkState (\s0 -> (s0*2, "ello")) 
-- should give (24, "hello").  24 = (10+2)*2. 
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instance Monad (State s) where 
    return = pure 
 
    -- (>>=) :: State s a -> (a -> State s b) -> State s b 
    -- Goal: 
    -- 1. overall old state --1st-program--> (intermediate state, a) 
    -- 2. give a and intermediate state to the 2nd program. 
    MkState stf1 >>= k = MkState 
        (\s0 -> 
           -- overall old state = s0, give to stf1 
           case stf1 s0 of { (s1, a) -> 
           -- k is waiting for the answer a 
           --      and also the intermediate state s1 
           -- technicality: "(k a) s1" is conceptually right but nominally a 
           -- type error because (k a) :: State s b, not s -> (s, b) 
           -- Ah but deState can unwrap! (Or use pattern matching.) 
           deState (k a) s1 } ) 

Dependency injection, Template method, Mock testing: 
- Here is the first version of my file format checker for my toy file format. The first three 

characters should be A, L, and newline. 
toyCheckV1 :: IO Bool 
toyCheckV1 = 
    getChar 
    >>= \c1 -> getChar 
    >>= \c2 -> getChar 
    >>= \c3 -> return ([c1, c2, c3] == "AL\n") 

- We can also use dependency injection to test it. One way of doing this is to define our 
own type class for the relevant, permitted operations. 
class Monad f => MonadToyCheck f where 
    toyGetChar :: f Char 
-- Simplifying assumptions: Enough characters, no failure.  A practical version 
-- should add methods for raising and catching EOF exceptions. 
 
The checker logic should be polymorphic in that type class. 
 
toyCheckV2 :: MonadToyCheck f => f Bool 
toyCheckV2 = 
    toyGetChar 
    >>= \c1 -> toyGetChar 
    >>= \c2 -> toyGetChar 
    >>= \c3 -> return ([c1, c2, c3] == "AL\n") 
 
Only things toyCheckV2 can do: toyGetChar, monad methods, purely functional 
programming. Because the user chooses f. And toyCheckV2 doesn't even know what it 
is. All it knows is it can call toyGetChar. 

- Now we can instantiate in two different ways, one way for production code, another way 
for mock testing. 
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- For production code: 
instance MonadToyCheck IO where 
    toyGetChar = getChar 
 
realProgram :: IO Bool 
realProgram = toyCheckV2 

- For purely functional mock testing: 
data Feeder a = MkFeeder (String -> (String, a)) 
-- Again, simplifying assumptions etc.  But basically like the state monad, with 
-- the state being what's not yet consumed in the string. 
 
-- Unwrap MkFeeder. 
unFeeder :: Feeder a -> String -> (String, a) 
unFeeder (MkFeeder sf) = sf 
 
instance Monad Feeder where 
    return a = MkFeeder (\s -> (s, a)) 
    prog1 >>= k = MkFeeder (\s0 -> case unFeeder prog1 s0 of 
                                     (s1, a) -> unFeeder (k a) s1) 
 
instance MonadToyCheck Feeder where 
    -- toyGetChar :: Feeder Char 
    toyGetChar = MkFeeder (\(c:cs) -> (cs, c)) 
 
instance Functor Feeder where 
    fmap f p = p >>= \a -> return (f a) 
 
instance Applicative Feeder where 
    pure a = MkFeeder (\s -> (s, a)) 
    pf <*> pa = pf >>= \f -> pa >>= \a -> return (f a) 
 
testToyChecker2 :: String -> Bool 
testToyChecker2 str = snd (unFeeder toyCheckV2 str) 
 
toyTest1 = testToyChecker2 "ALhello"   -- should be False 
toyTest2 = testToyChecker2 "AL\nhello" -- should be True 

- Here’s the code in its entirety: 
class Monad f => MonadToyCheck f where 
    toyGetChar :: f Char 
-- Simplifying assumptions: Enough characters, no failure.  A practical version 
-- should add methods for raising and catching EOF exceptions. 
 
toyCheckV2 :: MonadToyCheck f => f Bool 
toyCheckV2 = 
    toyGetChar 
    >>= \c1 -> toyGetChar 
    >>= \c2 -> toyGetChar 
    >>= \c3 -> return ([c1, c2, c3] == "AL\n") 
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data Feeder a = MkFeeder (String -> (String, a)) 
-- Again, simplifying assumptions etc.  But basically like the state monad, with 
-- the state being what's not yet consumed in the string. 
 
-- Unwrap MkFeeder. 
unFeeder :: Feeder a -> String -> (String, a) 
unFeeder (MkFeeder sf) = sf 
 
instance Monad Feeder where 
    return a = MkFeeder (\s -> (s, a)) 
    prog1 >>= k = MkFeeder (\s0 -> case unFeeder prog1 s0 of 
                                     (s1, a) -> unFeeder (k a) s1) 
 
instance MonadToyCheck Feeder where 
    -- toyGetChar :: Feeder Char 
    toyGetChar = MkFeeder (\(c:cs) -> (cs, c)) 
 
instance Functor Feeder where 
    fmap f p = p >>= \a -> return (f a) 
 
instance Applicative Feeder where 
    pure a = MkFeeder (\s -> (s, a)) 
    pf <*> pa = pf >>= \f -> pa >>= \a -> return (f a) 
 
testToyChecker2 :: String -> Bool 
testToyChecker2 str = snd (unFeeder toyCheckV2 str) 
 
toyTest1 = testToyChecker2 "ALhello"   -- should be False 
toyTest2 = testToyChecker2 "AL\nhello" -- should be True 

- E.g. 

 
Context Free Grammar: 

- A context-free grammar is a set of recursive rules used to generate patterns of strings. 
- Parser programs in compilers can be generated automatically from context-free 

grammars. 
- Context-free grammars have the following components: 

- A set of terminal symbols which are the characters that appear in the 
language/strings generated by the grammar. Terminal symbols never appear on 
the left-hand side of the production rule and are always on the right-hand side. 

- A set of nonterminal symbols (or variables) which are placeholders for 
patterns of terminal symbols that can be generated by the nonterminal symbols. 
These are the symbols that will always appear on the left-hand side of the 
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production rules, though they can be included on the right-hand side. The strings 
that a CFG produces will contain only symbols from the set of nonterminal 
symbols. 

- A set of production rules which are the rules for replacing nonterminal symbols. 
Production rules have the following form: variable  → string of variables and 
terminals. 

- A start symbol which is a special nonterminal symbol that appears in the initial 
string generated by the grammar. 

- To create a string from a context-free grammar, follow these steps: 
- Begin the string with a start symbol. 
- Apply one of the production rules to the start symbol on the left-hand side by 

replacing the start symbol with the right-hand side of the production. 
- Repeat the process of selecting nonterminal symbols in the string, and 

replacing them with the right-hand side of some corresponding production, 
until all nonterminals have been replaced by terminal symbols. Note, it could 
be that not all production rules are used. 

- E.g. A context-free grammar looks like this bunch of rules: 
Rule 1. E → E + E  
Rule 2. E → M  
Rule 3. M → M × M  
Rule 4. M → A  
Rule 5. A → 0  
Rule 6. A → 1  
Rule 7. A → (E) 
E, M, A are non-terminal symbols or variables. When you see them, you apply rules to 
expand. One of them is designated as the start symbol. You always start from it. Here, 
E is the start symbol.  
+, ×, 0, 1, (, ) are terminal symbols. They are the characters you want in your language. 

- Derivation/generation is a finite sequence of applying the rules until all non-terminal 
symbols are gone. We often aim for a specific final string. 

- E.g. 
        E → M  (By Rule 2) 

→ M × M (By Rule 3) 
→ A × M (By Rule 4) 
→ 1 × M (By Rule 6) 
→ 1 × A (By Rule 4) 
→ 1 × (E) (By Rule 7) 
→ 1 × (E + E) (By Rule 1) 
→ 1 × (M + E) (By Rule 2) 
→ 1 × (A + E) (By Rule 4) 
→ 1 × (0 + E) (By Rule 5) 
→ 1 × (0 + M) (By Rule 2) 
→ 1 × (0 + M × M) (By Rule 3) 
→ 1 × (0 + A × M) (By Rule 4) 
→ 1 × (0 + 1 × A) (By Rule 6) 
→ 1 × (0 + 1 × 1) (By Rule 6) 

- Context-free grammars can support matching parentheses and unlimited nesting. 
Backus-Naur Form (BNF): 
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- Backus-Naur Form is a computerized, practical notation for CFGs. 
- Surround non-terminal symbols by <>. 
- Allow multi-letter names. 

Note: In some versions, we don’t need <> around non-terminal symbols. 
- Merge rules with the same LHS. 
- In some versions, we surround terminal strings by single or double quotes. 
- Use ::= for →.  
- Our example grammar in BNF:  

<expr> ::= <expr> “+” <expr> | <mul> 
<mul> ::= <mul> “*” <mul> | <atom> 
<atom> ::= “0” | “1” | “(“ <expr> “)” 

Extended Backus-Naur Form (EBNF): 
- Use {...} for 0 or more occurrences.  
- Use [...] for 0 or 1 occurrences.  
- In some versions, no <> is needed around non-terminal symbols. 

Parse Tree/Derivation Tree: 
- A parse tree/derivation tree presents a derivation with more structure (tree), less 

repetition. 
- E.g. This example generates 0 + 0 + 0. 

 
This is how we would write the example using derivation: 
        E → E + E (By Rule 1) 

→ E + E + E (By Rule 1) 
→ M + E + E (By Rule 2) 
→ M + M + E (By Rule 2) 
→ M + M + M (By Rule 2) 
→ A + M + M (By Rule 4) 
→ A + A + M (By Rule 4) 
→ A + A + A (By Rule 4) 
→ 0 + A + A (By Rule 5) 
→ 0 + 0 + A (By Rule 5) 
→ 0 + 0 + 0 (By Rule 5) 

- In parse trees: 
- Internal nodes are non-terminal symbols.  
- Both operators and operands are terminal symbols at leaves.  
- The whole string is recorded, just scattered.  
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- The purpose is to help visualize derivation and grammar as well as making 
writing the derivations easy and simple. 

- When 2 or more different trees generate the same output, we say that the grammar is 
ambiguous. 
E.g. Two different trees generate the same 0 + 0 + 0:  

 
We try to design unambiguous grammars. 
CFG ambiguity is undecidable. 
Equivalence of two CFGs is also undecidable. 

- Note: Generally, the reason we have ambiguity in languages is because there are more 
than 1 calls to the same item in 1 line. 
E.g. In the above language, we have 
<expr> ::= <expr> + <expr>  
<mul> ::= <mul> * <mul> 
Hence, if we have 0+0+0 or 0*0*0, we can use either <expr> or <mul> for expansion. 

- Here is an unambiguous grammar that generates the same language as our ambiguous 
grammar example from above. 
<expr> ::= <expr> “+” <mul> | <mul> 
<mul> ::= <mul> “*” <atom> | <atom> 
<atom> ::= “0” | “1” | “(“ <expr> “)” 

Left Recursive vs Right Recursive: 
- <expr> ::= <expr> “+” <mul> 

That is a left recursive rule. The recursion is at the beginning (left).  
- <expr> ::= <mul> “+” <expr> 

That is a right recursive rule. The recursion is at the end (right). 
- Sometimes they convey intentions of left association or right association, but not always. 
- They affect some parsing algorithms. 
- Recursive descent parsing is a simple strategy for writing a parser. 
- For each non-terminal symbol, we create a procedure based on RHS: 

- Non-terminal Symbol: Procedure call, possibly mutual recursion. (Thus “recursive 
descent”, also “top-down”.)  

- Left recursion needs special treatment to avoid infinite loops.  
- Terminal Symbol: Consume input and check.  
- Alternatives: Look ahead to choose, or try and backtrack. 

- Some options for handling left recursion:  
- Redesign grammar to not have left recursion.  
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- Many left recursive rules just express left-associating operators. Can be done 
without left recursive code. 

- E.g. 
<sub> ::= <atom> "-" <sub> | <atom> 
<atom> ::= "0" | "1" | "(" <sub> ")" 
 
Starting with <sub>, we look at its RHS, which is <atom> "-" <sub> | <atom>. 
We see <atom>, which is a non-terminal symbol. Hence, we make a procedure call to 
<atom>. 
Next, we see a terminal symbol. We check if that terminal symbol is “-”. If it is, we 
continue to <sub>. Otherwise, we go to <atom>. 
Since the terminal symbol is “-”, we see <sub>, so we make a procedure call to <sub>. 
Pseudo-code of recursive descent parser: 
sub: 

try (atom; 
      read; if not "-" then fail; 
      sub ;) 
if that failed: atom; 

 
atom: 

read; 
if "0" or "1": success; 
if "(": sub; 

read; if not ")" then fail; 
else: fail; 
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Abstract Syntax Tree (AST) (vs Parse Tree): 
- Abstract Syntax Tree General Points: 

- Internal nodes are operators/constructs. 
An example of a construct is if-then-else. 

- Non-terminal symbols are gone or replaced by constructs.  
- Many terminal symbols are gone too if they play no role other than nice syntax. 

E.g. spaces, parentheses, punctuations 
Those bearing content are replaced by appropriate representations and do not 
stay as characters.  
E.g. The character ’+’ is replaced by a data constructor. 
E.g. The character ’0’ is replaced by the number 0.  

- The purpose is to present only the essential structure and content, ready for 
interpreting, compiling, analyses.  

- Parsers usually output abstract syntax trees when successful. 
- Comparison of Parse Tree and Abstract Syntax Tree: 

 
Lexical Analysis/Tokenization: 

- In principle, grammar and parser can work on characters directly, but it is usually messy. 
- In practice, we have 2 stages: 

1. We chop character streams into chunks and classify into lexemes/tokens and 
we discard spaces. Furthermore, we typically use objects or data representations 
instead of the actual strings. 
E.g. 
" (xa * xb)**25 " →  
[Open, Var "xa", Op Mul, Var "xb", Close, Op Exp, NumLiteral 25] 
Here, we use the object or data representation “Open” to denote the open 
parentheses, “(“. Furthermore, notice the space between “ and (. In the array, the 
space isn’t shown. 
Note: We can use regular expression to determine what category, variable, 
number, operator, etc, an item is. 
This step is called lexical analysis/tokenization. 

2. Parsing is based on CFG. Terminal symbols are tokens, not characters. 
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Recursive Descent Parsing: 
- Recursive descent parsers can be nicely expressed in an embedded domain-specific 

language, built from a few primitives and composed using the connectives from Functor, 
Applicative, and Monad. There is one more relevant connective type class, Alternative, 
for failures and choices. 

- The Alternative type class is used for backtracking. 
Parser representation: 

- Each parser can be represented as a function taking an input string, consuming a prefix 
of it, and giving one of: 

1. failure 
2. success, with unconsumed suffix and answer 

- When the result is “success”, it is important to give the unconsumed suffix rather than 
losing it. When liftA2 and >>= chain up two parsers, the second parser needs to see the 
leftover from the first parser. You can also think of a state variable for the current string 
to parse. Overall we are combining two effects, failure and state. 

- So we use the below function type to define our parser type: 
data Parser a = MkParser (String -> Maybe (String, a)) 
 
unParser :: Parser a -> String -> Maybe (String, a) 
unParser (MkParser sf1) = sf1 

- Each parser, there could be multiple, takes in an input string and consumes the first few 
characters of that input string. Then, the parser can either: 

1. Declare that this is not what I’m looking for. (Declare failure) 
2. Declare that this is what I’m looking for. The parser will give the unconsumed 

suffix to the next parser and give an answer. (Declare success) 
 
The parser is a function that takes in a string and returns the rest of the string and an 
answer upon success or nothing upon failure. 

- We can use unParser to use our parser. 
- I use Maybe because I anticipate at most one valid answer, and for simplicity I don't 

include error information for failures. 
- It is also possible to use [] to anticipate ambiguous grammars and multiple valid 

answers, with the empty list for failure. 
- Here is the function for using a parser. You give it an input string and it gives you an 

overall final answer (success or failure). It discards the final leftover as usually we aren't 
interested in it. If you're interested, use unParser above. 
 
runParser :: Parser a -> String -> Maybe a 
runParser (MkParser sf) inp = case sf inp of 
                                                     Nothing -> Nothing 
                                                     Just (_, a) -> Just a 
                                                    -- OR: fmap (\(_,a) -> a) (sf inp) 
 
In the case of Nothing, we get Nothing back. 
In the case of any string and an answer, a, we get the answer, a, back. 

Parsing primitives (character level): 
- In this example, a basic parser reads a character and gives it to you. It fails when/if 

there’s no character to read. 
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Here’s the code: 
anyChar :: Parser Char 
anyChar = MkParser sf 
  where 
    sf "" = Nothing 
    sf (c:cs) = Just (cs, c) 
 
E.g. 

 
- In this example, the parser is expecting a specific character and wants to read and check 

it. It fails if the character it’s reading is not the expected character or if there’s no 
character to read. 
 
Here’s the code: 
char :: Char -> Parser Char 
char wanted = MkParser sf 
  where 
    sf (c:cs) | c == wanted = Just (cs, c) 
    sf _ = Nothing 
 
E.g. 

 
- In this example, the parser is expecting a character that satisfies a specific condition or 

predicate. 
 
Here’s the code: 
satisfy :: (Char -> Bool) -> Parser Char 
satisfy pred = MkParser sf 
  where 
    sf (c:cs) | pred c = Just (cs, c) 
    sf _ = Nothing 
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If you expect a letter, you say “satisfy isAlpha” (isAlpha is from Data.Char.). 
E.g. 

 
- In this example, the parser is checking that the input string is empty. So its 

failure/success criterion is the opposite of char's. 
 
Here’s the code: 
eof :: Parser () 
eof = MkParser sf 
  where 
    sf "" = Just ("", ()) 
    sf _ = Nothing 
 
E.g. 

 
Functor, Applicative, Monad, Alternative connectives: 

- The effects of the Parser type are a combination of failure and state. Accordingly, the 
implementation of the Functor, Applicative, and Monad methods also combine those of 
Maybe and State. 
I.e. Checking for Nothing vs Just, and plumbing for state values (input strings and 
leftovers). 
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- Fmap, Applicative and Monad implementations: 
 
instance Functor Parser where 
    -- fmap :: (a -> b) -> Parser a -> Parser b 
    fmap f (MkParser sf) = MkParser sfb 
      where 
        sfb inp = case sf inp of 
                    Nothing -> Nothing 
                    Just (rest, a) -> Just (rest, f a) 
                  -- OR: fmap (\(rest, a) -> (rest, f a)) (sf inp) 
 
instance Applicative Parser where 
    -- pure :: a -> Parser a 
    pure a = MkParser (\inp -> Just (inp, a)) 
 
    -- liftA2 :: (a -> b -> c) -> Parser a -> Parser b -> Parser c 
    -- Consider the 1st parser to be stage 1, 2nd parser stage 2. 
    liftA2 op (MkParser sf1) p2 = MkParser g 
      where 
        g inp = case sf1 inp of 
                  Nothing -> Nothing 
                  Just (middle, a) -> 
                      case unParser p2 middle of 
                        Nothing -> Nothing 
                        Just (rest, b) -> Just (rest, op a b) 
 
instance Monad Parser where 
    -- return :: a -> Parser a 
    return = pure 
 
    -- (>>=) :: Parser a -> (a -> Parser b) -> Parser b 
    MkParser sf1 >>= k = MkParser g 
      where 
        g inp = case sf1 inp of 
                  Nothing -> Nothing 
                  Just (rest, a) -> unParser (k a) rest 

- In Control.Applicative there are more utility connectives, two of which are useful for 
parsing. 
 
(*>) :: Applicative f => f a -> f b -> f b 
p *> q = liftA2 (\a b -> b) p q 
-- Drop p's answer, give only q's answer.  Like (>>) but Applicative. 
 
(<*) :: Applicative f => f a -> f b -> f a 
p <* q = liftA2 (\a b -> a) p q 
-- Drop q's answer, give only p's answer. 
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Example of chaining up several primitive parsers sequentially: I want a letter, then a 
digit, then ‘!’; the answer is the letter and the digit in a string, and drop the ‘!’. 
I can use the following code to do it: 
lde :: Parser String 
lde = liftA2 (\x y -> [x,y]) (satisfy isAlpha) (satisfy isDigit) <* (char '!') 

 
- There is one more type class “Alternative” in the standard library containing methods for 

failure and choice.  
choice is an associative binary operator, and failure is the identity element. 
Note: You need to import it from Control.Applicative. 
 
class Applicative f => Alternative f where 
    empty :: f a 
    (<|>) :: f a -> f a -> f a 
    many :: f a -> f [a]  -- has default implementation 
    some :: f a -> f [a]  -- has default implementation 
 
This type class was actually inspired by parsing. 
The <|> operator came from the “|” in BNF, and many and some came from “0 or more 
times” and “1 or more times”. 
 
Here’s the implementation for our Parser: 
instance Alternative Parser where 
    -- empty :: Parser a 
    -- Always fail. 
    -- Putting empty under if-then-else or some conditional branching makes it 
       useful 
    empty = MkParser (\_ -> Nothing) 
 
    -- (<|>) :: Parser a -> Parser a -> Parser a 
    -- Try the 1st one. If success, done; if failure, do the 2nd one 
    MkParser sf1 <|> p2 = MkParser g 
      where 
        g inp = case sf1 inp of 
                  Nothing -> unParser p2 inp 
                  j -> j        -- the Just case 
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    -- many :: Parser a -> Parser [a] 
    -- 0 or more times, maximum munch, collect the answers into a list. 
    -- Can use default implementation. And it goes as: 
    many p = some p <|> pure [] 
    -- How to make sense of it: To repeat 0 or more times, first try 1 or more 
    -- times!  If that fails, then we know it's 0 times, and the answer is the 
    -- empty list. 
 
    -- some :: Parser a -> Parser [a] 
    -- 1 or more times, maximum munch, collect the answers into a list. 
    -- Can use default implementation. And it goes as: 
    some p = liftA2 (:) p (many p) 
    -- How to make sense of it: To repeat 1 or more times, do 1 time, then 0 or 
    -- more times!  Use liftA2 to chain up and collect answers. 
 
E.g. 

 
 
Example use of <|>: I want ‘A’ or ‘B’, followed by ‘0’ or ‘1’: 
ab01 :: Parser String 
ab01 = liftA2 (\x y -> [x,y]) (char 'A' <|> char 'B') (char '0' <|> char '1') 
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E.g. 

 
- In Control.Applicative there is also a utility connective based on Alternative. It's very 

handy when an ENBF rule says “0 or 1 time”. 
 
optional :: Alternative f => f a -> f (Maybe a) 
optional p = fmap Just p <|> pure Nothing 
 
E.g. 

 
 
Furthermore, if we do unParser (char '0') "0xyz", we get back Just ("xyz",'0'). 
If we do unParser (optional (char '0')) "0xyz", we get back Just ("xyz",Just '0'). 

 
Parsing Primitives (lexeme/token level): 

- We won't actually use the character-level primitives directly. A reason is that spaces will 
get into the way. Another is that we think at the token level. We only use character-level 
primitives to implement token-level primitives such as the ones below. Then we use 
connectives and token-level primitives for the grammar. 

- Whitespace handling convention: Token-level primitives assume there are no leading 
spaces, and skip trailing spaces, so the next token primitive may assume no leading 
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spaces. Something else at the outermost level will have to skip initial leading spaces. 
This will be discussed later. 
 
-- | Space or tab or newline (unix and windows). 
whitespace :: Parser Char 
whitespace = satisfy (\c -> c `elem` ['\t', '\n', '\r', ' ']) 
 
-- | Consume zero or more whitespaces, maximum munch. 
whitespaces :: Parser String 
whitespaces = many whitespace 
 
-- | Read a natural number (non-negative integer), then skip trailing spaces. 
natural :: Parser Integer 
natural = fmap read (some (satisfy isDigit)) <* whitespaces 
-- read :: Read a => String -> a 
-- For converting string to your data type, assuming valid string.  Integer 
-- is an instance of Read, and our string is valid, so we can use read. 
 
-- | Read an identifier, then skip trailing spaces.  Disallow the listed keywords. 
identifier :: [String] -> Parser String 
identifier keywords = 
    satisfy isAlpha 
    >>= \c -> many (satisfy isAlphaNum) 
    >>= \cs -> whitespaces 
    >> let str = c:cs 
    in if str `elem` keywords then empty else return str 
 
-- | Read the wanted keyword, then skip trailing spaces. 
keyword :: String -> Parser String 
keyword wanted = 
    satisfy isAlpha 
    >>= \c -> many (satisfy isAlphaNum) 
    >>= \cs -> whitespaces 
    *> if c:cs == wanted then return wanted else empty 
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CFG Parsing: 
- A parser for a context-free grammar can mostly look like the grammar rules. There are 

however a few things to watch out for, some tricks, and that lingering issue of initial 
leading spaces. 

- The parsers here will produce abstract syntax trees of this type: 
 
data Expr 
    = Num Integer 
    | Var String 
    | Prim2 Op2 Expr Expr       -- Prim2 op operand operand 
    | Let [(String, Expr)] Expr -- Let [(name, rhs), ...] body 
 
data Op2 = Add | Mul 

Right-associating Operator: 
- Take this simple rule, and suppose we intend the operator to associate to the right: 

muls ::= natural { "*" natural } OR muls ::= natural [ "*" muls ]. 
The second form uses right recursion to convey right association.  
This is perfect for recursive descent parsing. 
 
mulsRv1 :: Parser Expr 
mulsRv1 = liftA2 link 
          (fmap Num natural) 
          (optional (liftA2 (,) 
                      (operator "*" *> pure (Prim2 Mul)) 
                      mulsRv1)) 
  where 
    link x Nothing = x 
    link x (Just (op,y)) = op x y 
 
Note:  

 

 
 
We have the line fmap Num natural because we want the return type to be something 
in Expr. If we get an integer from natural, we want to add the Num tag to it. 
E.g. 
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We have the line (operator "*" *> pure (Prim2 Mul)) because if we see a “*”, we ignore 
it and use pure(Prim2 Mul) to represent it. 
 
Lastly, we have the line mulsRv1 because we want to make a recursive call. 
 
E.g. of running mulsRv1: 

 
- Instead of writing this recursion by hand again for every right-associative operator, we 

can call a re-factored function and specify just your operand parser and operator parser. 
 
Here is the re-factored general function for right-associative operators. 
chainr1 :: Parser a                        -- ^ operand parser 
                 -> Parser (a -> a -> a)   -- ^ operator parser 
                 -> Parser a                    -- ^ whole answer 
chainr1 getArg getOp = liftA2 link getArg 

      (optional 
 (liftA2 (,) getOp (chainr1 getArg getOp))) 
  where 
    link x Nothing = x 
    link x (Just (op,y)) = op x y 
 
So here is how we will implement the rule in practice: 
mulsRv2 :: Parser Expr 
mulsRv2 = chainr1 (fmap Num natural) (operator "*" *> pure (Prim2 Mul)) 
 
E.g. 
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Left-associating operator: 
- Suppose we want the operator to associate to the left instead. We cannot code up left 

recursion directly, but the trick is to implement the other form of the rule. 
 
Still imagine that the grammar rule is of this form: muls ::= natural { "*" natural }. 
Use many for the “{ "*" natural }” part to get a list of tuples of (operator, number). 
 
For example if the input string is “2 * 5 * 3 * 7”, my plan is to: 

1. read “2” and get Num 2 
2. read “* 5 * 3 * 7” with the help of many and get [(Prim2 Mul, Num 5), (Prim2 Mul, 

Num 3), (Prim2 Mul, Num 7)] 
3. Then using foldl on the list, starting with Num 2 as the initial accumulator, will 

build the left-leaning tree 
 
I.e. The parser still does right-associating recursion, but we will use foldl on the return 
value to make it left-associating. 
 
Here’s the code: 
mulsLv1 :: Parser Expr 
mulsLv1 = liftA2 link 
          (fmap Num natural) 
          (many (liftA2 (,) 
                  (operator "*" *> pure (Prim2 Mul)) 
                  (fmap Num natural))) 
  
  where 
    link x opys = foldl (\accum (op,y) -> op accum y) x opys 
 
fmap Num natural gets us “Num 2”. 
 
(many (liftA2 (,) 
                  (operator "*" *> pure (Prim2 Mul)) 
                  (fmap Num natural))) 
gets us [(Prim2 Mul, Num 5), (Prim2 Mul, Num 3), (Prim2 Mul, Num 7)] 
 
link x opys = foldl (\accum (op,y) -> op accum y) x opys combines “Num 2” with 
[(Prim2 Mul, Num 5), (Prim2 Mul, Num 3), (Prim2 Mul, Num 7)]. 
The argument, x, is “Num 2.” 
The argument, opys, is [(Prim2 Mul, Num 5), (Prim2 Mul, Num 3), (Prim2 Mul, Num 7)]. 
In foldl (\accum (op,y) -> op accum y) x opys, accum is “Num 2”, op is “Prim2 Mul” 
and y is “Num _”. It’s taking the value of fmap Num natural and putting “Prim2 Mul” over 
it and the first “Num _” in the list. 
 
Note: The recursive call is in “many”. 
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E.g. 

 
- Again in practice we don't write this code again, we re-factor this into a general function: 

 
chainl1 :: Parser a  -- ^ operand parser 
     -> Parser (a -> a -> a) -- ^ operator parser 
     -> Parser a -- ^ whole answer 
chainl1 getArg getOp = liftA2 link 
                       getArg 
                       (many (liftA2 (,) getOp getArg)) 
  where 
    link x opys = foldl (\accum (op,y) -> op accum y) x opys 
 
Then we use it like: 
mulsLv2 :: Parser Expr 
mulsLv2 = chainl1 (fmap Num natural) (operator "*" *> pure (Prim2 Mul)) 
 
E.g. 

 
Comparing between mulsLv1 and mulsRv1: 

- E.g. 
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Initial space, final junk: 

- Token-level parsers assume no leading spaces. 
Notice how if we have spaces in front, natural doesn’t work. 

 
This is because natural is expecting to read numbers and it’s reading spaces instead. 

- Another problem is that a small parser for a part of the grammar can leave non-space 
stuff unconsumed, since we anticipate that later a small parser for another part may 
need it. But the overall combined parser for the whole grammar cannot leave any 
non-space stuff unconsumed. By the time you're done with the whole grammar, any 
non-space leftover means the original input string is actually erroneous. 
E.g. We don't consider “2*3*” to be a legal arithmetic expression because our muls 
parsers can make sense of the prefix “2*3” but leaves the last “*” unconsumed. 
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- The trick for solving both is to have a “main” parser whose job is simply to clear initial 
leading spaces, call the parser for the start symbol, then use eof to check that there is 
nothing left. 
 
Here’s the code: 
lesson2 :: Parser Expr 
lesson2 = whitespaces *> muls <* eof 
  where 
    muls = chainl1 (fmap Num natural) (operator "*" *> pure (Prim2 Mul)) 
 

 
- Note: We do *> and <* outside of the parser because if we do it inside, there may be 

recursive calls to it in the middle of your grammar which may give back the wrong result. 
Operator precedence and parentheses: 

- Suppose I have two operators “*” and “+”, with “+” having lower precedence, and I also 
support parentheses for overriding precedence. 

- In other words, from lowest precedence (binding most loosely) to highest (binding most 
tightly) is “+”, then “*”, then individual numbers and parentheses (same level without 
ambiguity). 

- The trick is to have lower (looser) rules call higher (tighter) rules, and have the 
parentheses rule call the lowest rule for recursion. The start symbol is from the lowest 
rule. This is also how you can write your grammar to convey precedence. 
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- E.g. 
 
So my grammar goes like (start symbol is adds): 
adds ::= muls { "+" muls } 
muls ::= atom { "*" atom } 
atom ::= natural | "(" adds ")" 
 
And my parser goes like (let's say left-associating operators): 
lesson3 :: Parser Expr 
lesson3 = whitespaces *> adds <* eof 
  where 
    adds = chainl1 muls (operator "+" *> pure (Prim2 Add)) 
    muls = chainl1 atom (operator "*" *> pure (Prim2 Mul)) 
    atom = fmap Num natural <|> (openParen *> adds <* closeParen) 
 
E.g. 

 
Keywords and variables: 

- Here is the whole grammar and the start symbol is expr: 
expr ::= local | adds 
local ::= "let" { var "=" expr ";" } "in" expr 
adds ::= muls { "+" muls } 
muls ::= atom { "*" atom } 
atom ::= natural | var | "(" expr ")" 
 
A problem is “let inn+4” should be a syntax error, but a naïve parser implementation 
sees “let”, “in”, “n”, “+”, “4”. 
 
One solution is to use a parser for a reserved word should first read as many alphanums 
as possible, not just the expected letters, and then check that the whole string equals the 
keyword. This is what keyword does in an earlier section. 
 
Conversely, the parser for identifiers should read likewise, but then check that the string 
doesn't clash with reserved words. This is why identifier from earlier takes a parameter 
for reserved words to avoid. 
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- Here is the whole parser: 
 
lesson4 :: Parser Expr 
lesson4 = whitespaces *> expr <* eof 
  where 
    expr = local <|> adds 
 
    local = pure (\_ eqns _ e -> Let eqns e) 
            <*> keyword "let" 
            <*> many equation 
            <*> keyword "in" 
            <*> expr 
    -- Basically a liftA4. 
    -- Could also be implemented in monadic style, like equation below. 
 
    equation = var 
               >>= \v -> operator "=" 
               >> expr 
               >>= \e -> semicolon 
               >> return (v, e) 
    -- Basically a liftA4. 
    -- Recall that liftA4 f a b c d = pure f <*> a <*> b <*> c <*> d 
    -- Could also be implemented in applicative style, like local above. 
 
    semicolon = char ';' *> whitespaces 
    adds = chainl1 muls (operator "+" *> pure (Prim2 Add)) 
    muls = chainl1 atom (operator "*" *> pure (Prim2 Mul)) 
    atom = fmap Num natural 
           <|> fmap Var var 
           <|> (openParen *> expr <* closeParen) 
    var = identifier ["let", "in"] 
 
E.g. 
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Semantics I: Expressions, Bindings, Functions: 
- Is used to implement interpreters. 
- Definition: static X means doing X by analysing the code, without needing to run it and 

wait, while dynamic X means doing X while running the code. 
- For a basic setup, I will start with dynamic checking of types and dynamic checking that 

variables exist when they are used. 
Setup: 

- I will have several kinds of run-time errors such Type errors, variable not found, and if 
you support division, you will also have division by zero. 

- I use the Either monad to represent this possibility. 
- We should use an algebraic data type for error messages, especially if later you support 

catching and handling errors. 
- Here’s the data type for my interpreter: 

mainInterp :: Expr -> Either String Value 
 
Note: For simplicity, the professor used String for error messages. We should use an 
algebraic data type. 
If we get an error, we get something of type String. 
Otherwise, we get something of type Value. 

- We can use a monad to model the fact that my language has the effect of 
errors/exceptions. 

- I have a function, raise, for raising errors. It is defined to be simply Left in this lecture but 
it won't be that easy in a more featureful interpreter for a more complex language, such 
as stateful languages. 
Here’s the code for raise: 
raise :: String -> Either String a 
raise = Left 

- I will also be passing around a dictionary that maps variables to values. So I need this: 
mainInterp expr = interp expr Map.empty 
interp :: Expr -> Map String Value -> Either String Value 
 
The recursion happens in interp, which is a helper interpreter. 
Map String Value is used to map variable names to Values. 
Now I will implement interp for each construct. 

Basic constructs: 
- This language has number literals, boolean literals, and binary operators: 

data Expr = Num Integer 
          | Bln Bool 
          | Prim2 Op2 Expr Expr         -- Prim2 op operand operand 
          | ... 
 
data Op2 = Eq | Plus | Mul 

- I will be evaluating them and more to number values, boolean values, and later another 
kind of values.  

- A clean habit is not to re-use the abstract syntax tree type, but to define a separate type, 
since the values have much fewer possibilities, and some possibilities will not 
correspond well to any abstract syntax tree. 
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E.g. 
data Value = VN Integer 
           | VB Bool 

- Here is how I evaluate a number literal. Boolean literal is similar. 
interp (Num i) _ = pure (VN i) 

Arithmetic (all operands evaluated): 
- Here is how I evaluate addition; most other arithmetic operators are similar. The insight 

is to use structural recursion to evaluate the operands, then you will have number values 
to add. The annoying part is to check that the values are actually numbers, so I re-factor 
out the checking to a helper function. 

- Here’s the code: 
interp (Prim2 Plus e1 e2) env =  
    interp e1 env 
    >>= \a -> intOrDie a 
    >>= \i -> interp e2 env 
    >>= \b -> intOrDie b 
    >>= \j -> return (VN (i+j)) 
 
intOrDie :: Value -> Either String Integer 
intOrDie (VN i) = pure i 
intOrDie _ = raise "type error" 
 
Note: env is a dictionary. 
Note: When checking division, we have to check for division by 0 by checking if the 
denominator is 0. 

Short-circuiting, conditionals (operands selectively evaluated): 
- I have an if-then-else: 

data Expr = ... 
          | Cond Expr Expr Expr         -- Cond test then-branch else-branch 
If test is true, then we evaluate the “then-branch” only. 
Otherwise, we evaluate the “else-branch” only. 
 
This is a short-circuiting operator: some operands are selectively evaluated, others 
skipped.  
Here is the code: 
interp (Cond test eThen eElse) env = 
    interp test env 
    >>= \a -> case a of 
      VB True -> interp eThen env 
      VB False -> interp eElse env 
      _ -> raise "type error" 
 
You can add short-circuiting logical operators, and, or, and their semantics will be 
similar. 
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Variables, local bindings, environments (scopes): 
- Here’s the data type: 

data Expr = ... 
          | Var String 
 
However, where do we get the contents of variables from?  
A nice solution is to maintain a dictionary that maps variables to contents, so we can just 
look up.  
This dictionary is called environment and mapping a variable to its content is called 
binding. 
Also, the nature of the contents depend on the evaluation strategy of the language. For 
example, call by value just needs values, while lazy evaluation needs something more 
complex to cater for partly evaluated, partly unevaluated expressions. 

- We will use Data.Map for dictionaries. Practical interpreters use hash tables and 
compilers use an array because they compile variable names to addresses. 

- To evaluate a variable, we just look it up. 
If we find it, we return it. 
Otherwise, we raise an exception. 

- Here’s the code: 
interp (Var v) env = case Map.lookup v env of 
  Just a -> pure a 
  Nothing -> raise "variable not found" 

- E.g. 

 

 

 

 
- My local binding construct wraps an expression inside a new local context of 0 or more 

“name = expr” bindings. 
Here’s the data type: 
data Expr = ... 
          | Let [(String, Expr)] Expr   -- Let [(name, rhs), ...] eval-me 
 
E.g. 
let { x=1; y=0 } in x+y is represented as  
Let [("x", Num 1), ("y", Num 0)] (Prim2 Plus (Var "x") (Var "y")). 
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- There are a number of decisions to make about the semantics of the local binding 
construct. It is also possible to offer many different local binding constructs, one for each 
way of making these decisions. 

1. Scoping and recursion: 
Suppose you have let { x=2+3; y=x+4; } in …. 

a. Here, it is equivalent to let { x=2+3 } in let { y=x+4 } in … 
So for y=x+4, we use the x in x=2+3. 
This is called sequential binding. 
If you choose sequential binding, right after you process one equation, 
you have to extend the environment to include its new binding, under 
which you process the remaining equations and eventually the wrapped 
expression. 

b. An alternative is that y=x+4 uses an outer x. 
This is called parallel binding. 
Note: This does not always imply parallel computing. It only implies 
semantic independence. 

Note: Those two choices don't support mutual recursion. The third alternative 
supports mutual recursion, so every equation may use every variable defined in 
the same group. If you do call by value, then you also need to place restrictions 
on the RHSes. 

2. Evaluation strategy:  
The choices are call by value, lazy evaluation, and call by name. 
With call by value, first go through the equations in the given order, evaluate the 
RHS of each one right away, and lastly evaluate the wrapped expression. 
E.g. 
I will evaluate 2+3 and store the result in x. 
Then, I will evaluate x+4, where x=5, and store the result in y. 
Then, I will evaluate the stuff after “in”. 

- Here’s the code. This is for call by value. 
interp (Let eqns evalMe) env = 
    extend eqns env 
    >>= \env' -> interp evalMe env' 
    -- Example: 
    --    let x=2+3; y=x+4 in x+y 
    -- -> x+y   (with x=5, y=9 in the larger environment env') 
    -- "extend env eqns" builds env' 
  where 
    extend [] env = return env 
    extend ((v,rhs) : eqns) env = 
        interp rhs env 
        >>= \a -> let env' = Map.insert v a env 
                  in extend eqns env' 
 
For extend, if the list is empty, we give back the environment 
Otherwise, for each tuple in the list, “v” is the variable and “rhs” is what the variable is set 
to.  
Since this is call by value, right away, we evaluate RHS under the given environment. 
This is the line “interp rhs env”. 
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“interp rhs env” gives back some value. We bind that value with the lambda function. The 
lambda function puts the variable and the evaluated rhs into the original environment 
and then it makes a recursive call to process the rest of the equation. 
 
E.g. Working on let { x=2+3; y=x+4; } in x+y, we get: 

 
Now we're ready to evaluate x+y under {x = 5, y = 9}. 
However these are local variables unknown to the outside. 
Suppose I have (let {x=2+3; y=x+4;} in x+y) * (1+1). 
I make a recursive call to handle the “let-in”. Inside that recursive call the new 
environment {x = 5, y = 9} is built for internal use, but not returned or passed back to the 
outside. The outside still uses the outside environment for “1+1”. 

- E.g. 

 

 
Here: 
x = 1  
y = x + 4 = 1 + 4 = 5 
x + y = 1 + 5 = 6 

 
Here: 
x = 3 + 4 = 7 
y = x + 4 = 7 + 4 = 11 
x + y = 7 + 11 = 18. 

 
In the first example, e1 = 5+4 = 9 and e2 = 1+1 = 2. e1 * e2 = 18. 
In the second example, e2 = Prim2 Plus (Var "x") (Var "y"). However, when we do 
mainInterp (Prim2 Mul e1 e2), the x and y in e1 are not shown to e2. Hence, we get the 
error message “variable not found”. 
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Function construction (lambda), closures: 
- For simplicity, I just have a lambda construct for anonymous functions.  

If you want to define a function with a name, use lambda together with let. 
- Here’s the data type: 

data Expr = ... 
          | Lambda String Expr          -- Lambda var body 

- E.g. \x -> … is represented as Lambda "x" (...). 
- Suppose your lambda is \y->x+y. 

y is a bound variable and x is a free variable. 
This also carries to let. In let y=x+1 in x*y, y is a bound variable and x is a free variable. 
Bound variable of/in an expression: You can see where the variable is introduced or 
declared or defined. 
Free variable of/in an expression: You can't see where the variable is introduced or 
declared or defined. It has to come from the outside. 
E.g. A free variable like “x” is probably bound in an outer context. 

- When the interpreter runs into the lambda, and if it already knows x=10 from the outer 
context, it needs to attach “x=10” to the lambda so it is not forgotten. 

- The value after evaluating a lambda needs to remember 3 things 
1. parameter name 
2. function body 
3. the environment in scope for this lambda. 

- Definition: The combination of “\y->x+y” plus “x=10 from an outer context” is called a 
closure. A closure is a record or data structure that stores an expression together with 
the environment for all of its free variables. 

- In this lecture, my only use of closures is for lambdas, so my closure representation is 
specialized for that purpose only. 

- Here’s the data type and code: 
data Value = ... 
           | VClosure (Map String Value) String Expr 
interp (Lambda v body) env = pure (VClosure env v body) 
 
(Map String Value) is the environment. 
String is the parameter name(s). 
Expr is the function body/expression. 

- E.g. 

 

 
This is equivalent to let {x = 10;} in \y -> x + y 
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Function application: 
- Here’s the data type: 

data Expr = ... 
          | App Expr Expr               -- App func param 

- There is a decision to make about the semantics of function application, namely which 
evaluation strategy should be used: call by value, lazy evaluation, or call by name.  
Here, I will do call by value. 
Note: All of them require you to evaluate the function until you get a function closure, 
sooner or later. 

- Since I do call by value, I evaluate the parameter until I get a value. Then, I plug the 
value in. To plug the value in, just like evaluating let, I can first extend the environment to 
bind the parameter name to the parameter value, then it makes sense to evaluate the 
function body under that environment. 

- Here’s the code: 
interp (App f e) env = 
    interp f env 
    >>= \c -> case c of 
      VClosure fEnv v body -> 
          interp e env 
          >>= \eVal -> let bEnv = Map.insert v eVal fEnv  -- fEnv, not env 
                       in interp body bEnv 
          -- E.g. 
          --    (\y -> 10+y) 17 
          -- -> 10 + y      (but with y=17 in environment) 
          -- 
 
E.g. for (let x=7 in \y -> x+y) 10: 

1. interp on the function gives: VClosure {x = VN 7} "y" (x+y) 
2. interp on the “10” gives: VN 10 
3. Now do: interp (x+y) {x = VN 7, y = VN 10} 

 
E.g. 

 
- Dynamic scoping is when a variable name refers to whoever has that name at the time 

of evaluation. We shouldn’t do this. 
E.g. 
let {x=10; f = \y->x+y;} in 
let {x=5;} in 
f0 → 5+0 (Here, x=5 is used instead of x=10) 

- Lexical/Static scoping is when a variable name refers to whoever has that name in the 
code location. We should do this. 
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Recursion: 
- The trick is to take an extra parameter for a function to be called. Then, call a function 

with itself as a parameter. 
- Here’s an example of doing factorial recursively. 

Here’s a trace of let mkFac = \f -> \n -> if n=0 then 1 else n * (f f) (n-1) in mkFac 
mkFac 2 
 
  mkFac mkFac 2 
→ (\f -> \n -> if n=0 then 1 else n * (f f) (n-1)) mkFac 2 
→ (\n -> if n=0 then 1 else n * (mkFac mkFac) (n-1)) 2 
→ if 2=0 then 1 else 2 * (mkFac mkFac) (2-1) 
→ 2 * (mkFac mkFac) (2-1) 
→ 2 * (\f -> \n -> ...) mkFac (2-1) 
→ 2 * (\n -> if n=0 then 1 else n * (mkFac mkFac) (n-1)) (2-1) 
→ 2 * (\n -> if n=0 then 1 else n * (mkFac mkFac) (n-1)) 1 
→ 2 * if 1=0 then 1 else 1 * (mkFac mkFac) (1-1) 
→ 2 * 1 * mkFac mkFac (1-1) 
→ 2 * 1 * (\n -> if n=0 then 1 else n * mkFac mkFac (n-1)) (1-1) 
→ 2 * 1 * (\n -> if n=0 then 1 else n * mkFac mkFac (n-1)) 0 
→ 2 * 1 * if 0=0 then 1 else 0 * ... 
→ 2 * 1 * 1 


