
CSCC24 Week 1 Notes
1

Introduction:
- Haskell is a widely used purely functional language. Functional programming is based

on mathematical functions.
- Haskell is a lazy language. By lazy, we mean that Haskell won't evaluate any expression

without any reason. When the evaluation engine finds that an expression needs to be
evaluated, then it creates a thunk data structure to collect all the required information for
that specific evaluation and a pointer to that thunk data structure. The evaluation engine
will start working only when it is required to evaluate that specific expression. As a
consequence, in Haskell, many short-circuiting operators and control constructs are
user-definable whereas in other languages you’re stuck with what’s hardwired.
E.g. Suppose we define f(x) = 4. Now, what does f(1/0) equal to?
Most languages will do call by value, meaning that they will evaluate 1/0 first, which will
give them an error. However, because Haskell is lazy, it doesn't evaluate 1/0 yet and will
just plug in as-is. Oh x is unused, so f(1/0) = 4.
In the pictures below, it shows a Python program and a Haskell program that tries to do
the same thing, namely, create a function and have it return 4 and then call the function
with the argument 1/0. In Python, this causes an error while in Haskell, it doesn’t.

- A Haskell application is nothing but a series of functions.
- In conventional programming language, we need to define a series of variables along

with their type. In contrast, Haskell is a strictly typed language. This means that the
Haskell compiler is intelligent enough to figure out the type of the variable declared,
hence we need not explicitly mention the type of the variable used.

Comments:
- Comments in Haskell are denoted as:

1. Single line: --
2. Multi line: {- .. -}

CSCC24 Week 1 Notes
2

Do Notation:
- A do-block combines together two or more actions into a single action.
- Note: In a do-block, you don’t use the keyword “in”.

Variables:
- The left-hand side is the name of the value. Furthermore, = is used to declare the

expression that is bound to the name on the left side (value definition).
E.g. a = 3

- Haskell variables are immutable.
E.g. If you do something like:
a = 3
a = a + 1
print(a)
You will get an error or your print(a) will not run.

- We can name part of the computation using let or where.
- There are 2 mains ways let is used in Haskell:

1. This form is a let-expression, which is shown below:
let [<definition>] in <expression> is an expression and can be used anywhere.
E.g. let x = 5 in x + 1

2. This form is a let-statement. This form is only used inside of do-block, and does
not use in.
E.g.

Note: in must be used in conjecture with let. It has no meaning on its own.

- where is part of a definition and is special syntax. where is bound to a surrounding
syntactic construct, like the pattern matching line of a function definition.
E.g. y = x + 1 where x = 5

- E.g. Consider the code and output below:

https://wiki.haskell.org/index.php?title=Pattern_matching&action=edit&redlink=1

CSCC24 Week 1 Notes
3

putStr, putStrLn and print:
- putStr will print a string without a newline character at the end.
- putStrLn will print a string with a newline character at the end.
- print will just print whatever is in the parentheses.
- E.g. Consider the code and output below:

Basic Data Types:

1. Numbers:
- Haskell is intelligent enough to decode some number as a number. Therefore, you need

not mention its type externally as we usually do in case of other programing languages.

CSCC24 Week 1 Notes
4

- E.g. Consider the code and output below:

- Note: :t is to include the specific type related to the inputs.
- E.g. Consider the code and output below:

Notice how it shows the type of the input.

2. Characters:
- Like numbers, Haskell can intelligently identify a character given in as an input to it.
- E.g. Consider the code and output below:

Note: The error message "<interactive>:1:1: Not in scope: `a'" means that the Haskell
compiler is warning us that it is not able to recognize your input. Haskell is a type of
language where everything is represented using a number.

CSCC24 Week 1 Notes
5

3. String:
- A string is nothing but a collection of characters. There is no specific syntax for using

string, but Haskell follows the conventional style of representing a string with double
quotation.

- E.g. Consider the code and output below:

- Note: Strings are just lists of characters, as shown below:

4. Boolean:
- Haskell has 2 boolean values: True and False.
- E.g. Consider the code and output below:

CSCC24 Week 1 Notes
6

- Note: True and False must have the T/F capitalized. true and false will get you errors, as
shown below:

5. List:
- A List is a collection of the same data type separated by comma.

E.g. [‘a’,’b’,’c’] is a list of characters.
E.g. [1,2,3] is a list of numbers.

- Like other data types, you do not need to declare a List as a List. Haskell is intelligent
enough to decode your input by looking at the syntax used in the expression.

- Lists in Haskell are homogeneous in nature, which means they won’t allow you to
declare a list of different kinds of data type.

- E.g. Consider the code and output below:

- To get the length of a list, L, you can do length L.

E.g. Consider the code and output below:

CSCC24 Week 1 Notes
7

- To get the reverse of a list, L, you can do reverse L.

E.g. Consider the code and output below:

- To get the nth index of a list, L, you can do L !! n.

Note: In Haskell, list indexes start at 0. So, L !! 0 gets the first element, L !! 1 gets the
second element, and so on.
E.g. Consider the code and output below:

CSCC24 Week 1 Notes
8

- Note: head L returns the first element of a list while last L returns the last element of a
list.
E.g. Consider the code and output below:

- To add elements to the start of a list, L, you can do element1 : element2 : … : L.

This is called consing. In fact, Haskell builds all lists this way by consing all elements to
the empty list, []. The commas-and-brackets notation are just syntactic sugar. So
[1,2,3,4,5] is exactly equivalent to 1:2:3:4:5:[].
E.g. Consider the code and output below:

CSCC24 Week 1 Notes
9

- To add elements to the end of a list, L, you can do L ++ [element1, element2, …].
E.g. Consider the code and output below:

- To join 2 lists, L1 and L2, together, you can do L1 ++ L2.

E.g. Consider the code and output below:

- To Delete the first N elements from a list, L, you can do drop N L.

E.g. Consider the code and output below:

CSCC24 Week 1 Notes
10

- Note: To remove the first element of a list, L, you can do tail L. To remove the last
element of a list, L, you can do init L.
E.g. Consider the code and output below:

- To get the first N elements of a list, L, you can do take N L.

Note: The output will be returned as a list.
E.g. Consider the code and output below:

- To split a list, L, at the Nth position, you can do splitAt N L.

E.g. Consider the code and output below:

- To insert an element into the middle of a list, L, you have to split the list into two smaller

lists, put the new element in the middle, and then join everything back together. There is
no built-in function to do so.
Syntax: let (b,c) = splitAt n a in b ++ [new_element] ++ c
E.g. Consider the code and output below:

- To delete an element into the middle of a list, L, you have to split the list in two, remove

the element from one list, and then join them back together. There is no built-in function
to do so.
Syntax: let (b, c) = splitAt 2 a in b ++ (tail c)
E.g. Consider the code and output below:

CSCC24 Week 1 Notes
11

6. List Comprehension:
- List comprehension is the process of generating a list using mathematical expression.

Parametric Polymorphism:
- A value is polymorphic if there is more than one type it can have. Polymorphism is

widespread in Haskell and is a key feature of its type system.
- Most polymorphism in Haskell falls into one of two broad categories: parametric

polymorphism and ad-hoc polymorphism.
- Parametric polymorphism refers to when the type of a value contains one or more

(unconstrained) type variables, so that the value may adopt any type that results from
substituting those variables with concrete types.

- In Haskell, this means any type in which a type variable, denoted by a name in a type
beginning with a lowercase letter, appears without constraints (i.e. does not appear to
the left of a =>). In Java and some similar languages, generics (roughly speaking) fill this
role.

- For example, the function id :: a -> a contains an unconstrained type variable a in its
type, and so can be used in a context requiring Char -> Char or Integer -> Integer or any
of a literally infinite list of other possibilities. Likewise, the empty list [] :: [a] belongs to
every list type, and the polymorphic function map :: (a -> b) -> [a] -> [b] may operate on
any function type. Note, however, that if a single type variable appears multiple times, it
must take the same type everywhere it appears, so e.g. the result type of id must be the
same as the argument type, and the input and output types of the function given to map
must match up with the list types.

- Since a parametrically polymorphic value does not "know" anything about the
unconstrained type variables, it must behave the same regardless of its type. This is a
somewhat limiting but extremely useful property known as parametricity.

- E.g.

https://wiki.haskell.org/Polymorphism#Parametric_polymorphism
https://wiki.haskell.org/Polymorphism#Ad-hoc_polymorphism

CSCC24 Week 1 Notes
12

Functions:
- Syntax: function_name argument(s) = function definition

The function definition is a formula that uses the argument in context with other
already defined terms.
E.g.
area r = pi * r ^ 2 Note: Here, r is an argument.

increment n = n + 1 Note: Here, n is an argument.

- Note: Call functions without parentheses.
- Note: Function call is left associative.
- Note: Function call takes precedence over operators.
- Note: Functions can accept more than one parameter.
- Note: In Haskell functions are first class values. That means they can be put in

variables, passed and returned from functions, etc. You can also have function
composition. I.e. You have a function that takes two functions and a value, applies the
second function to the value and then applies the first function to the result.

- We can supply only some of the arguments to a function. If we have a function that
takes N arguments and we supply K arguments, we'll get a function that takes the
remaining (N - K) arguments.
E.g. Consider the code and output below:

Here, we have a function, func1, that takes 3 arguments and adds them up. In this
case, N = 3. However, we only supply 2 arguments (1 and 2), so in this case, K = 2 and
we get a new function, func2, that takes (3-2 or 1) argument. When we enter the last
argument for func2, it gives the sum of the 3 arguments (The first 2 arguments were
passed to func1 and the 3rd argument was passed to func2.)

- We can combine functions, too.

CSCC24 Week 1 Notes
13

- E.g. Consider the code and output below:

Here, I created a function called areaRectangle that takes in 2 arguments, a length and
width, and gives back their product. Then, I created another function called areaSquare
that takes in 1 argument, a length, and gives back s2, using areaRectangle to calculate
it. Lastly, I created a third function called areaTriangle that takes 2 arguments, a base
and height, and gives back the result of base*height/2, using areaRectangle to calculate
base*height.

- E.g. Consider the code and output below:

Here, I created a function called double that takes an argument and gives back its
double. Then, I created a function called quadruple that takes an argument and gives
back its quadruple using the double function twice. Notice that I needed brackets for
double (double x). When I tried doing double double x, it gave me an error.

- We can give values a type signature using ::. Furthermore, we use -> to denote the type
of a function from one type to another type. Note: -> is right associative.

CSCC24 Week 1 Notes
14

- E.g. Consider the code and output below:

In the first picture, I didn’t use ::. Hence, when I did double 2.4 and double 5.6, I didn’t
get an error. However, in the second picture, I did double :: Int -> Int. This means that
the input must be of type Int. Hence, when I do double 2.3, it gives me an error.

Haskell Basic Operator Notes
1

Addition Operator:
- The “+” operator is used for addition.
- E.g.

Subtraction Operator:

- The “-” operator is used for subtraction.
- E.g.

- Note: It’s best to use parentheses “()” to enclose negative numbers. Otherwise, the

compiler might think the “-” isn’t part of the number.
E.g.

Multiplication Operator:

- The “*” operator is used for multiplication.
- E.g.

Haskell Basic Operator Notes
2

Division Operator:
- The “/” operator is used for division.
- E.g.

Exponent Operator:

- The “^” operator is used for exponent.
- Syntax: base^exponent
- E.g.

- E.g.

Sequence/Range Operator:

- The “..” operator is used for sequence or range.
- You can use this operator while declaring a list with a sequence of values.
- If you want to print all the values from 1 to 10, then you can use something like "[1..10]".

Similarly, if you want to generate all the alphabets from "a" to "z", then you can just type
"[a..z]".

Haskell Basic Operator Notes
3

- E.g.

CSCC24 Week 2 Notes
1

Pattern Matching:
- Pattern matching means that you write down a literal at the place where you're

supposed to write the parameter(s).
- E.g.

- E.g.

Case Expressions:

- Allows us to write control flows on data types.
- Matches from top to bottom.
- Note: The pattern _ means match anything.
- Syntax:

case <expr> of
 <pattern1> -> <result1>
 <pattern2> -> <result2>
 ...
 <patternN> -> <resultN>

- E.g.

CSCC24 Week 2 Notes
2

- E.g.

If statements:

- Syntax:
if (condition)
 then (value)
else if (condition)
 then (value)
else
 (value)

- E.g.

- Note: The else if is conditional, but you must have the if and the else.

type, term, value:

- Note: term is also widely known as expression.

CSCC24 Week 2 Notes
3

- Note: 5+4 is a term; the result of evaluating it, 9, is a value.
I.e. term is your code and value is the result of the term.

Synthesis and Evaluation:
- Synthesis is how you write code.
- Evaluation is how the computer runs your code.
- For synthesis, using induction can help you write the code.
- E.g. Consider the factorial code below:

Here is the mindset of how to write it:

WTP: For all natural n: Factorial n = n!
Base case:
WTP: Factorial 0 = 0!
Notice that 0! = 1, so if I code up Factorial 0 = 1, I get Factorial 0 = 0!.
Induction step:
Let natural n ≥ 1 be given.
Induction hypothesis: Factorial (n-1) = (n-1)!
WTP: Factorial n = n!
Notice that n! = n*(n-1)!

= n * Factorial (n-1) by I.H.
So if I code up Factorial n = n * Factorial (n-1), I get Factorial n = n!.

Here is the evaluation of factorial 3:
→ 3 * factorial(3 - 1)
→ 3 * factorial(2)
→ 3 * (2 * factorial(2 - 1))
→ 3 * (2 * factorial(1))
→ 3 * (2 * (1 * factorial(1-1)))
→ 3 * (2 * (1 * (factorial(0))))
→ 3 * (2 * (1 * 1))
→ 3 * 2
→ 6

Guards:
- Denoted by “|”
- We use | to say alternatively.

CSCC24 Week 2 Notes
4

- E.g.

- E.g.

Lists:

- Some types of lists are [Integer], [Bool], [] Integer, [] Bool, etc.
- An empty list is denoted as [].
- A list literal is denoted like [4, 1, 6].

Note: Remember that Haskell makes lists in this way:
(4 : (1 : (6 : ([])))) or 4 : 1 : 6 : []
The parentheses are optional.

- Formally (recursive definition as in CSCB36): a list is one of:
- []
- <an item here> : <a list here>

- Note: These are singly-linked lists. These are not arrays.
- Note: Lists are immutable in Haskell.
- E.g. Insertion Sort:

Strategy: Have a helper function insert.
Take element e and list xs. xs is assumed to have been sorted in increasing order.
Put e into the “right place” in xs so the whole is still sorted.
E.g. insert 4 [1,3,5,8,9,10] = [1,3,4,5,8,9,10]

CSCC24 Week 2 Notes
5

Here’s the code:

E.g.

Haskell List Notes
1

Introduction:
- In Haskell, lists are a homogenous data structure. It stores several elements of the

same type. That means that we can have a list of integers or a list of characters but we
can't have a list that has a few integers and then a few characters.

- Lists are denoted by square brackets and the values in the lists are separated by
commas.

- E.g.

List Operations:
Note: I will use L1 and L2 to denote lists in the examples below, and e1 and e2 to denote
elements.

1. Adding to the beginning of a list:
- To add to the beginning of a list, use “:”. This is called consing. In fact, Haskell builds all

lists this way by consing all elements to the empty list, []. The commas-and-brackets
notation are just syntactic sugar. So [1,2,3,4,5] is exactly equivalent to 1:2:3:4:5:[].

- Syntax: e1 : L1
- E.g.

2. Adding to the end of a list:
- To add to the end of a list, use “++”.
- Syntax: L1 ++ [e1]
- E.g.

3. Joining 2 lists:
- To join L2 to L1, do L1 ++ L2.
- E.g.

4. Comparing Lists:
- Lists can be compared if the stuff they contain can be compared. When using <,

<=, >, >=, == to compare lists, they are compared in lexicographical order.

Haskell List Notes
2

- Syntax:
L1 > L2
L1 >= L2
L1 < L2
L1 <= L2
L1 == L2

- E.g.

5. Head:

- head takes a list and returns its first element.
- Syntax: head L1
- E.g.

6. Last:

- last takes a list and returns its last element.
- Syntax: last L1
- E.g.

7. Init:

- init takes a list and returns everything except its last element.
- Syntax: init L1
- E.g.

8. Tail:

- tail takes a list and returns everything except for the first element.
- Syntax: tail L1

Haskell List Notes
3

- E.g.

9. Length:

- length takes a list and returns its length.
- Syntax: length L1
- E.g.

10. Reverse:

- reverse takes a list and returns its reverse.
- Syntax: reverse L1
- E.g.

11. Take:

- take takes a number and a list. It extracts that many elements from the beginning
of the list.

- Syntax: take num L1
- E.g.

12. Drop:

- drop takes a number and a list and it removes that many elements from the list.

Haskell List Notes
4

- Syntax: drop num L1
- E.g.

13. Range/Sequence:

- Denoted by “..”
- Syntax: [starting_element .. end_element]
- E.g.

14. Other facts:

- To show that a list only has 0 elements, you can do this: [].
- To show that a list only has 1 element, you can do this: [a] or (a:[]).
- To show that a list has 1 or more elements, you can do this: (a:_). The “_” means

0 or more items.
- There's also a thing called as patterns. Those are a handy way of breaking

something up according to a pattern and binding it to names whilst still keeping a
reference to the whole thing. You do that by putting a name and an @ in front of
a pattern. For instance, the pattern xs@(x:y:ys). This pattern will match exactly
the same thing as x:y:ys but you can easily get the whole list via xs instead of
repeating yourself by typing out x:y:ys in the function body again.

Haskell List Notes
5

- E.g.

- E.g.

- E.g.

- E.g.

CSCC24 Week 3 Notes
1

Lambda Functions:
- It is an anonymous function, which is a function without giving it a name.
- A lambda function is denoted by the "\" character.
- Syntax: \(var) -> (expression)

E.g.

- Note: Lambda functions can be used as a substitute for missing parameters.
- If you intend 2 parameters, the Haskell culture is to model it as a nested function:

\x -> (\y -> 2*x - 3*y) (those parentheses can be omitted). This creates a function that
maps the 1st parameter to a function that takes the 2nd parameter. Doing this is called
currying.
The shorthand way of doing it is: \x y -> 2*x - 3*y
E.g.

Notice that both ways work and give the same result.

- Recall from earlier diffSq x y = (x - y) * (x + y). This can be written as
diffSq = \x y -> (x - y) * (x + y) or even diffSq x = \y -> (x - y) * (x + y).
E.g.

- When applying a function to 2 parameters, such as doing function a b, that’s shorthand

for (function a) b.

CSCC24 Week 3 Notes
2

E.g.
diffSq 10 5 is shorthand for (diffSq 10) 5.

 Compare this with the diffSq examples from above and
notice that you get the same result.

- Note: It is possible to use “diffSq 10” alone. This is called a partial application. Partial
application is when you decide to use a function but not give it all of the needed
parameters. When it is evaluated, here is what happens:
diffSq 10
→ (\x y -> (x - y) * (x + y)) 10
→ \y -> (10 - y) * (10 + y)

- Typewise, X -> Y -> A is shorthand for X -> (Y -> A).
Higher Order Function:

- Higher Order Functions are a unique feature of Haskell where you can use a function
as an input or output argument.
Note: We use () to show that a function takes a function as an input.

- E.g.

The first function multiplies each variable by 2. 4*2 + 7*2 = 22.
The second function squares each variable. 42 + 72 = 65.
The third function increases each variable by 2. 4+2 + 7+2 = 15.
In the first picture above, (Int -> Int) shows that four_plus_seven takes in a function as
an input and that function takes in an Int as an input and outputs something of type Int.

- E.g.

5*4 + 12 = 32
5*7 + 12 = 47
32 + 47 = 79

Parametric Polymorphism:
- A polymorphic function is a function that works for many different types.
- Polymorphic: Can become one of many types.

CSCC24 Week 3 Notes
3

- Monomorphic: Stuck with being one single type.
- Also known as generics in other languages.
- Type variables always begin in lowercase whereas concrete types like Int or String

always start with an uppercase letter.
- Just as a variable represents some value of a given type, a type variable represents

some type. A type variable represents one type across the type signature and function
definition in the same way a variable represents a value throughout the scope it's
defined in.

- E.g.

In the add function, only Integers are allowed. Hence, when I tried doing add 2.0 3.0, I
got an error. However, in add2, as long as the inputs are numbers, I can add integers,
floats or a mix.
Note: Num x => just means that x must be of type Num, or x must be a number. I need
to put this or else I get an error. This is because if I don’t specify the type, I could,
theoretically, add 2 non-numbers, which would cause an error. Hence, Haskell mandated
that I put the Num x => part.

- E.g.
rep2 :: a -> [a]
In a -> [a], the “a” there is a type variable or type parameter. Names of type variables
are up to you, doesn't have to be “a”, but does have to start with lowercase.
E.g. element, myElementType, etc

CSCC24 Week 3 Notes
4

Note: Type constants/Concrete types, names of built-in types and defined types, start
with uppercase.
E.g. Integer, Bool, String

- Note: The choice of the type is up to the user, not the provider. Furthermore, in
parametric polymorphism, the “parametric” part means that the provider is not told what
the user chooses. As a result, the code can be inflexible. However, it’s easy to test your
code.

- Generally, flexibility for the implementer is in direct conflict with predictability for the user
and vice versa.

Map:
- A map is the name of a higher-order function that applies a given function to each

element of a functor, such as a list, returning a list of results in the same order. It is often
called apply-to-all when considered in functional form.

- Can be written in 2 ways:
1. map :: (a -> b) -> [a] -> [b]
2. map :: (a -> b) -> ([a] -> [b])

- E.g.

By having the word “map”, it allowed me to use the square function on a list.

- E.g.

Notice that when I put the keyword “map” at the beginning, I can run ascii_conversion on
a list.

https://en.wikipedia.org/wiki/Functional_form

CSCC24 Week 3 Notes
5

- What it does by example:
map ord ['a', 'b', 'c']
= [ord 'a', ord 'b', ord 'c']
= [97, 98, 99]

- Consider this: map (map ord) [['a', 'b', 'c'], ['x', 'y', 'z']] :: [[Int]]
Detailed type breakdown:

- inner map :: (Char -> Int) -> ([Char] -> [Int])
(I'm choosing a=Char, b=Int)

- map ord :: [Char] -> [Int]
- outer map :: ([Char] -> [Int]) -> [[Char]] -> [[Int]]

(I'm choosing a=[Char], b=[Int])
- map (map ord) :: [[Char]] -> [[Int]]

- What it does by example:
map (map ord) [['a', 'b', 'c'], ['x', 'y', 'z']]
= [map ord ['a', 'b', 'c'], map ord ['x', 'y', 'z']]
= [[ord 'a', ord 'b', ord 'c'], [ord 'x', ord 'y', ord 'z']]
= [[97, 98, 99], [120, 121, 122]]

- E.g.

- Note: To use ord, you need to do import Data.Char.

Type-specific behaviour preview:
- Consider the code below:

The square function takes in a number and returns the square of that number. Since any
number, not just integers, can be squared, we want to use parametric polymorphism.
However, there’s an issue. What happens if the user enters a string or boolean? To
avoid this problem, we have to do the following:

By putting the Num a => part, we are saying that “a” must be a number.

User-defined types:
- Also called algebraic data types.
- We can define our own types using the keyword data.
- Each option must start with an uppercase letter.
- We use | to say alternatively.
- There needs to be at least one case, and each case can have 0 or more fields.

CSCC24 Week 3 Notes
6

- E.g.

Here, the type name is Area.
Circle, Square and Triangle are called data constructors or tags. As stated before, all
these data constructors must be capitalized.
Note: These are not OOP constructors. It's only labelling, not arbitrary initialization code.
Note: These are not OOP subclasses/subtypes either. Circle is not a subtype, it's a term
and value.

Recursive types:
- A recursive data type is a data definition that refers to itself.
- This lets us define even more interesting data structures such as linked lists and trees.
- The line, deriving (Eq, Show), is called the deriving clause. It specifies that we want

the compiler to automatically generate instances of the Eq and Show classes. The EQ
type class is an interface which provides the functionality to test the equality of an
expression. The Show type class has a functionality to print its argument as a String.
Whatever may be its argument, it always prints the result as a String.

CSCC24 Week 3 Notes
7

- E.g.

CSCC24 Week 3 Notes
8

Recursion & Lists:
- E.g. Consider the example below:

A value of type MyIntegerList is one of:

1. INil
2. ICons x xs, if x::Integer and xs::MyIntegerList

data MyIntegerList = INil | ICons Integer MyIntegerList
 deriving (Show, Eq)

exampleMyIntegerList = ICons 4 (ICons (-10) INil)

-- `from0to n` builds a MyIntegerList from 0 to n-1
from0to :: Integer -> MyIntegerList
from0to n = make 0
 where
 make i | i >= n = INil
 | otherwise = ICons i (make (i+1))

myISum :: MyIntegerList -> Integer
myISum INil = 0
myISum (ICons x xs) = x + myISum xs

Recursion & Binary Trees:

- E.g. Consider the example below:

A value of type IntegerBST is one of:

1. IEmpty
2. INode lt x rt, if lt::IntegerBST, x::Integer, rt::IntegerBST

data IntegerBST = IEmpty | INode IntegerBST Integer IntegerBST
 deriving Show

exampleIntegerBST = INode (INode IEmpty 3 IEmpty) 7 (INode IEmpty 10 IEmpty)

ibstInsert :: Integer -> IntegerBST -> IntegerBST
ibstInsert k IEmpty =
 INode IEmpty k IEmpty
ibstInsert k inp@(INode left key right)
 | k < key = INode (ibstInsert k left) key right
 | k > key = INode left key (ibstInsert k right)
 | otherwise = inp -- INode left key right

Note: Since this is functional programming with immutable trees, “insert” means produce
a new tree that is like the input tree but with the new key. Maybe it's better to say “the
tree plus k”.

CSCC24 Week 3 Notes
9

Polymorphic Types:
- Consider the example below:

data MyList a = Nil | Cons a (MyList a) deriving (Eq, Show)

exampleMyListI :: MyList Integer
exampleMyListI = Cons 4 (Cons (-10) Nil)

exampleMyListS :: MyList String
exampleMyListS = Cons "albert" (Cons "bart" Nil)

These are homogeneous lists. They can't have different item types in the same list.
For example, Cons "albert" (Cons True Nil) is illegal because what would be its type,
MyList String? MyList Bool?

- Some polymorphic algebraic data types from the standard library as further examples:
- Maybe:

data Maybe a = Nothing | Just a
-- Great for: Sometimes there is no answer

- Either:
data Either a b = Left a | Right b
-- Great for: Having two possible types.

CSCC24 Week 4 Notes
1

Evaluation Order
- Most languages use call by value for evaluation order.

I.e. To evaluate f(x,y), evaluate x and y first (which one first depends on the language),
then plug into f's body, and then evaluate the body.

- E.g. If there is a function defined as f(x, y) = x:
 f (3+4, div(4, 2)) eval a parameter, arithmetic
→ f (7, div(4, 2)) eval the other parameter, arithmetic
→ f (7, 2) ready to plug in at last
→ 7

- However, a problematic parameter can cause an error/exception even if it would be
unused:
f (3+4, div(1, 0)) eval a parameter, arithmetic
→ f (7, div(1, 0)) eval the other parameter, arithmetic
→ Error caused by div(1,0)

- Haskell uses “lazy evaluation.” Lazy evaluation is also known as call by need.
- Lazy evaluation in Haskell (sketch):

- To evaluate “f x y”: don’t evaluate x and y first. Just plug x and y into f’s right
hand side (RHS) and evaluate that.
If the RHS refers to the same parameter multiple times: same shared copy, no
duplication.

- If that runs you into pattern matching: evaluate parameter(s) just enough to
decide whether it's a match or non-match. If match, plug into RHS and evaluate.
If it’s a non-match, try the next pattern. (If it runs out of patterns, declare
“undefined” aka “error”.)

- To evaluate arithmetic operations, use call-by-value.
- E.g.

- E.g.

Take Function in Haskell:

- The take function takes a number and a list and returns the first n elements of the list,
where n is the number inputted.

- E.g. take 3 [a,b,c,d,e] = [a,b,c]
- E.g. take 3 [a,b] = [a,b]
- The implementation goes like this:

take 0 _ = []

CSCC24 Week 4 Notes
2

take _ [] = []
take n (x:xs) = x : take (n-1) xs

Single Linked List:
- Recall that lists in Haskell are linked lists.
- Singly-linked list is a very space-consuming data structure (all languages). And if you

ask for “the ith item” you're doing it wrong.
- E.g.

Equivalently, using the function composition operator “.”, we get:
cubeRoot = within 0.001 . iterate next

- With this, you really have a pipeline like Unix pipelines.
- If you use lists lazily in Haskell, it is an excellent control structure—a better for-loop than

for-loops. Then list-processing functions become pipeline stages. If you do it carefully, it
is even O(1)-space. If furthermore you're lucky (if the compiler can optimize your code),
it can even fit entirely in registers without node allocation and GC overhead.

- Thinking in high-level pipeline stages is both more sane and more efficient—with the
right languages.

- Some very notable list functions when you use lists lazily as for-loops, or when you think
in terms of pipeline stages:

- Producers: repeat, cycle, replicate, iterate, unfoldr, the [x..], [x..y] notation
(backed by enumFrom, enumFromTo)

- Transducers: map, filter, scanl, scanr, (foldr too, sometimes) take, drop, splitAt,
takeWhile, dropWhile, span, break, partition, zip, zipWith, unzip

- Consumers: foldr, foldl, foldl', length, sum, product, maximum, minimum, and,
all, or, any

- A producer is some monadic action that can yield values for downstream consumption.
- A consumer can only await values from upstream.
- A transducer is like a combination of both producers and consumers.
- E.g. of iterate:

CSCC24 Week 4 Notes
3

When lazy evaluation hurts:
- E.g. Consider the code below:

It takes a number, 0, and a list of numbers and computes the sum of the numbers in the
list.

Evaluation of mySumV2 [1,2,3]:
mySumV2 (1 : 2 : 3 : []) plug in
→ g 0 (1 : 2 : 3 : []) match, plug in
→ g (0 + 1) (2 : 3 : []) match, plug in
→ g ((0 + 1) + 2) (3 : []) match, plug in
→ g (((0 + 1) + 2) + 3) [] match, plug in
→ ((0 + 1) + 2) + 3 arithmetic at last
→ (1 + 2) + 3 ditto
→ 3 + 3 ditto
→ 6
This takes Ω(n) space for the postponed arithmetic.

- Note: If there is recursion, you bracket right to left. If there is no recursion, you bracket
left to right. If you look at the example of mySumV2 [1,2,3], you’ll see that it’s bracketed
left to right. I.e. (((0 + 1) + 2) + 3)
Consider the below example:
mySum [] = 0
mySum (x:xt) = x + mySum xt

mySum [1,2,3]
→ 1 + (mySum (2 : 3 : []))
→ 1 + (2 + (mySum (3 : [])))
→ 1 + (2 + (3 + (mySum ([]))))
→ 1 + (2 + (3 + (0)))
→ 1 + (2 + (3 + 0))
→ 1 + (2 + 3)
→ 1 + 5
→ 6

Notice how because there’s recursion, the brackets are right heavy.

Data Constructor and Type Constructor Notes
1

Type Constructor vs Data Constructor:
- A type constructor is a function that takes 0 or more types and gives you back a new

type. If it has zero arguments it is called a nullary type constructor or simply a type.
Note: All type constructors must start with a capital letter.

- A data constructor/tag is a function that takes 0 or more values and gives you back a
new value. If it has zero arguments is called a nullary data constructor or simply a
constant.
Note: All data constructors must start with a capital letter.

- In a data declaration, a type constructor is the thing on the left hand side of the equals
sign. The data constructor(s) are the things on the right hand side of the equals sign.
You use type constructors where a type is expected, and you use data constructors
where a value is expected.

- Examples:
1. This is an example of a nullary type constructor with 2 nullary data constructors:

data Bool = True | False
2. This is an example of a unary type constructor:

data Tree a = Tip | Node a (Tree a) (Tree a)
Here, “a” is a type variable.

Examples:
1. Consider the code and output below:

Data Constructor and Type Constructor Notes
2

The line “data BinaryTree = Empty | Node BinaryTree Integer BinaryTree” means
that BinaryTree is either Empty or Node BinaryTree Integer BinaryTree. Hence, when we
output a BinaryTree for insert, we either have to output Empty or Node BinaryTree
Integer BinaryTree.

Data Constructor and Type Constructor Notes
3

2. Consider the code and output below:

Data Constructor and Type Constructor Notes
4

Here, Boolean is a type constructor while T and F are data constructors. As stated
above, Boolean, T and F must be capitalized.

CSCC24 Week 5 Notes
1

Seq:
- seq is used for killing lazy evaluation where you deem it unsuitable.
- It is a built in function.
- seq is a special function that is used to force expressions to be evaluated. seq evaluates

the first parameter and passes it to the second parameter.
- To evaluate “seq x y”: evaluate x to “weak head normal form”, then continue with y.
- Weak head normal form (WHNF) means:

- for built-in number types: until you have the number
- for algebraic data types: until you have a data constructor
- for functions: until you have a lambda

- Naturally, “seq x y” is most meaningful when x is something that y will need.
- E.g. mySumV2, mySumV3 and mySumV4 are used to sum a list.

Evaluation of mySumV2 [1,2,3]:
 mySumV2 (1 : 2 : 3 : [])
→ g 0 (1 : 2 : 3 : [])
→ g (0 + 1) (2 : 3 : [])
→ g ((0 + 1) + 2) (3 : [])
→ g (((0 + 1) + 2) + 3) []
→ ((0 + 1) + 2) + 3
→ (1 + 2) + 3
→ 3 + 3
→ 6

Now, we will use seq.

Evaluation of mySumV3 [1,2,3]:
g 0 (1 : 2 : 3 : [])
→ seq 0 (g (0 + 1) (2 : 3 : []))
→ g (0 + 1) (2 : 3 : [])
→ seq a (g (a + 2) (3 : [])) with a = 0 + 1
→ seq a (g (a + 2) (3 : [])) with a = 1
→ g (1 + 2) (3 : [])
→ seq b (g (b + 3) []) with b = 1 + 2
→ seq b (g (b + 3) []) with b = 3

CSCC24 Week 5 Notes
2

→ g (3 + 3) []
→ 3 + 3
→ 6

We can still decrease number of the iterations:

g 0 (1 : 2 : 3 : [])
→ seq b (g b (2 : 3 : [])) with b = 0 + 1
→ seq b (g b (2 : 3 : [])) with b = 1
→ g 1 (2 : 3 : [])
→ seq c (g c (3 : [])) with c = 1 + 2
→ seq c (g c (3 : [])) with c = 3
→ g 3 (3 : [])
→ seq d (g d []) with d = 3 + 3
→ seq d (g d []) with d = 6
→ g 6 []
→ 6

Fold Functions:
- Back when we were dealing with recursion, we noticed a theme throughout many of the

recursive functions that operated on lists. Usually, we'd have an edge case for the empty
list. We'd introduce the x:xs pattern and then we'd do some action that involves a single
element and the rest of the list. It turns out this is a very common pattern, so a couple of
very useful functions were introduced to encapsulate it. These functions are called folds.
They're sort of like the map function, only they reduce the list to some single value.

- A fold takes a binary function, a starting value, called an accumulator, and a list to fold
up. The binary function itself takes two parameters. The binary function is called with the
accumulator and the first or last element and produces a new accumulator. Then, the
binary function is called again with the new accumulator and the now new first or last
element, and so on. Once we've walked over the whole list, only the accumulator
remains, which is what we've reduced the list to.

- Folds can be used to implement any function where you traverse a list once, element by
element, and then return something based on that. Whenever you want to traverse a list
to return something, chances are you want a fold. That's why folds are, along with maps
and filters, one of the most useful types of functions in functional programming.

- Foldl and foldr are two fold functions.
Foldl:

- Also called the left fold.
- It folds the list up from the left side. The binary function is applied between the starting

value and the head of the list. That produces a new accumulator value and the binary
function is called with that value and the next element, etc.

CSCC24 Week 5 Notes
3

- E.g. Consider foldl (\acc x -> acc + x) 0 xs, 0 is the accumulator or starting value, xs is
the list, acc is the accumulator value and x is the first element of the list.

- E.g. The below functions all take in a list of numbers and sum up the numbers.

Here’s the evaluation of mySum [3,5,3,1]:
→ 0 + 3 [3, 5, 3, 1]
→ 3 + 5 [5, 3, 1]
→ 8 + 3 [3, 1]
→ 11 + 1 [1]
→ 12
The bolded dark green numbers represent the accumulator value.

- Note: Instead of (\acc x -> acc + x), we can use (+) instead.
- Note: In the second example, we can omit the xs as the parameter because calling foldl

(+) 0 will return a function that takes a list. Generally, if you have a function like foo a =
bar b a, you can rewrite it as foo = bar b, because of currying.

- E.g.

Foldr:

- The right fold, foldr, works in a similar way to the left fold, only the accumulator eats up
the values from the right. Also, the left fold's binary function has the accumulator as the
first parameter and the current value as the second one (so \acc x -> ...), the right fold's
binary function has the current value as the first parameter and the accumulator as the
second one (so \x acc -> ...). It kind of makes sense that the right fold has the
accumulator on the right, because it folds from the right side.

CSCC24 Week 5 Notes
4

- E.g.

Here’s the evaluation of mySum3 [3,5,3,1]:
→ 0 + 1 [3, 5, 3, 1]
→ 1 + 3 [3, 5, 3]
→ 4 + 5 [3, 5]
→ 9 + 3 [3]
→ 12
The bolded dark green numbers represent the accumulator value.

- One big difference is that right folds work on infinite lists, whereas left ones don't. To put
it plainly, if you take an infinite list at some point and you fold it up from the right, you'll
eventually reach the beginning of the list. However, if you take an infinite list at a point
and you try to fold it up from the left, you'll never reach an end.

- Note: If you have foldr op z (xs:xt)
where
 z = …
 op x r = …

z is the starting value, x is the first element/value of the list and r = foldr op z xt.
Foldl1 and foldr1:

- The foldl1 and foldr1 functions work much like foldl and foldr, only you don't need to
provide them with an explicit starting value. They assume the first or last element of the
list to be the starting value and then start the fold with the element next to it. With that in
mind, the sum function can be implemented like so: sum = foldl1 (+). Because they
depend on the lists they fold up having at least one element, they cause runtime errors if
called with empty lists. foldl and foldr, on the other hand, work fine with empty lists.
When making a fold, think about how it acts on an empty list. If the function doesn't
make sense when given an empty list, you can probably use a foldl1 or foldr1 to
implement it.

Type Classes:
- In Haskell, every statement is considered as a mathematical expression and the

category of this expression is called as a Type. You can say that "Type" is the data type
of the expression used at compile time.

- In a generic way, Type can be considered as a value, whereas Type Class can be
considered as a set of similar kinds of Types.

- A “type class” declares a group of overloaded operations (“methods”).
- Syntax:

class ClassName typeVar where

CSCC24 Week 5 Notes
5

 methodName :: type sig containing typeVar
 -- Optional: default implementations

- Example: Methods == and /= are grouped under the Eq class. Its declaration in the
standard library goes like this:

class Eq a where
 (==), (/=) :: a -> a -> Bool
 -- default implementation for (==)
 x == y = not (x /= y)
 -- default implementation for (/=)
 x /= y = not (x == y)
 -- default implementations are deliberately circular so you just have to
 -- implement one of them to break the cycle
The role of type variable “a” is a placeholder for Integer, Char, etc.

To implement these methods for a type, e.g., the standard library has this for Bool:

instance Eq Bool where -- (so a=Bool here)
 False == False = True
 True == True = True
 _ == _ = False

 -- default implementation for (/=) takes hold

We say “Bool is an instance of Eq”.
- Note: When you do “instance Num a where …”, you are making “a” a Num type.
- WARNING:

1. A class is not a type. Eq is not a type. These are illegal:
foo :: Eq -> Eq -> Bool
bar :: Eq a -> Eq a -> Bool

2. A type is not a “subclass”. Bool is not a “subclass” of Eq.
- Method types outside classes look like this:

(==) :: Eq a => a -> a -> Bool
The additional “Eq a =>” is marked for polymorphic but the user's choice of a must be an
instance of Eq. This marker also appears when you write polymorphic functions using
the methods.

- Type classes use => while types use ->.
I.e. function :: (Type Class) => (type 1) -> … -> (type n)
E.g.
sum :: (Num a) => a -> a -> a

- Built in Types and Type Classes:
- Int: Int is a type representing the Integer types data. Every whole number within

the range of 2147483647 to -2147483647 comes under the Int type class.
- Integer: Integer can be considered as a superset of Int. This value is not

bounded by any number, hence an Integer can be of any length without any
limitation.

- Float: Float is a floating point number with single precision at the end.
- Double: Double is a floating point number with double precision at the end.
- Bool: Bool is a Boolean Type. It can be either True or False.

CSCC24 Week 5 Notes
6

- Char: Char represents Characters. Anything within a single quote is considered
as a Character.

- EQ: EQ type class is an interface which provides the functionality to test the
equality of an expression. Any Type class that wants to check the equality of an
expression should be a part of this EQ Type Class. Whenever we are checking
any equality using any of the types mentioned above, we are actually making a
call to the EQ type class. EQ is used for == or !=.

- Ord: Ord is another type class which gives us the functionality of ordering. Like
EQ interface, Ord interface can be called using ">", "<", "<=", ">=", "compare". An
instance of Ord is also an instance of Eq. We say “Ord is a subclass of Eq”, but
beware that this is unrelated to OOP subclasses.

- Show: Show is a type class that has a functionality to print its argument as a
String. Whatever may be its argument, it always prints the result as a String.

- Read: Read is a type class that does the same thing as Show, but it won’t print
the result in String format.

- Enum: Enum is another Type class which enables the sequential or ordered
functionality in Haskell.

- Bounded: All the types having upper and lower bounds come under this Type
Class.
E.g.

- Number operations are grouped into several type classes:

- Num:
- some methods: +, -, *, abs
- instances: all number types

- Integral:
- some methods: div, mod
- instances: Int, Integer

- Fractional:
- some methods: /, recip
- instances: Rational, Float, Double, Complex a

- E.g. Why is the following a type error?
let xs :: [Double]
 xs = [1, 2, 3]
in sum xs / length xs

Answer:
sum xs :: Double, but length xs :: Int
(/) wants the two operands to be of the same type.
How to fix: sum xs / fromIntegral (length xs) or use realToFrac
fromIntegral :: (Integral a, Num b) => a -> b
realToFrac :: (Real a, Fractional b) => a -> b

CSCC24 Week 5 Notes
7

- Often it is straightforward but boring to write instances for these classes, so the
computer offers to auto-gen for you. However, restrictions apply. You can request it at
the definition of your algebraic data type like this:
data MyType = ... deriving (Eq, Ord, Bounded, Enum, Show, Read)

Foldable:
- The Foldable type class provides a generalisation of list folding (foldr and friends) and

operations derived from it to arbitrary data structures. Besides being extremely useful,
Foldable is a great example of how monoids can help formulating good abstractions.

- The purpose of this section is twofold:
1. This explains why some of the library functions for lists have types like

length :: Foldable t => t a -> Int
instead of the simpler
length :: [a] -> Int

2. This familiarizes you with things like “Foldable t” and how it is not “Foldable (t a)”.
- E.g.

- A few library functions that consume a list and compute a “summary” are:

- length :: [a] -> Int
- sum :: Num a => [a] -> a
- minimum :: Ord a => [a] -> a

-- assumes non-empty list
- foldr :: (a -> b -> b) -> b -> [a] -> b

These make sense for other data structures representing sequences too, not just linked
lists.
E.g. sum should be used for vector and seq, too.
sum :: Num a => Vector a -> a
-- Vector is an array, 0-based Int index. Third-party but popular library.

sum :: Num a => Seq a -> a
-- Seq is a middle ground between array and linked list,
-- O(1) prepend and append, log time random access.

Haskell supports this generalization with a type class:
class Foldable t where
 length :: t a -> Int -- implicitly ∀a, similarly below
 sum :: Num a => t a -> a
 minimum :: Ord a => t a -> a
 foldr :: (a -> b -> b) -> b -> t a -> b -- implicitly ∀a,b

CSCC24 Week 5 Notes
8

 -- and others

Note: It is not “class Foldable (t a)”. Likewise, instances go like “instance Foldable []”,
not “instance Foldable ([] a)”.

Good type classes and bad type classes:
- A good type class has these traits:

- You have multiple instances.
- Methods satisfy useful laws or expectations, therefore can be used to build useful

general algorithms.
- Example: Ord: <= is reflexive, transitive, anti-symmetric, total. These laws are the

basis of sorting algorithms and binary search tree algorithms.
- Bad type class: Created for no further benefit than:

- Common method name.
- Procrastinating writing actual code, procrastinating making up your mind what to

do.

Foldl and Foldr Notes
1

Fold:
- A fold takes a binary function, a starting value, called the accumulator, and a list to fold

up. The binary function itself takes two parameters. The binary function is called with the
accumulator and the first or last element and produces a new accumulator. Then, the
binary function is called again with the new accumulator and the now new first or last
element, and so on. Once we've walked over the whole list, only the accumulator
remains, which is what we've reduced the list to.

Foldl:
- Here’s the function definition and implementation of foldl:

foldl :: (a -> b -> a) -> a -> [b] -> a
-- if the list is empty, the result is the initial value; else
-- we recurse immediately, making the new initial value the result
-- of combining the old initial value with the first element.
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

- Note: foldl consumes the list left to right and evaluates from left to right.
- With foldl, the binary function has the accumulator as the first parameter and the current

value as the second one.
- E.g. foldl (-) 0 [1..10] = -55

foldl (-) 0 [1..10]
→ foldl (-) (0 - 1) [2..10]
→ foldl (-) ((0-1) - 2) [3..10]
→ foldl (-) (((0-1) - 2) - 3) [4..10]
→ foldl (-) ((((0-1) - 2) - 3) - 4) [5..10]
→ foldl (-) (((((0-1) - 2) - 3) - 4) - 5) [6..10]
→ foldl (-) ((((((0-1) - 2) - 3) - 4) - 5) - 6) [7..10]
→ foldl (-) (((((((0-1) - 2) - 3) - 4) - 5) - 6) - 7) [8..10]
→ foldl (-) ((((((((0-1) - 2) - 3) - 4) - 5) - 6) - 7) - 8) [9..10]
→ foldl (-) (((((((((0-1) - 2) - 3) - 4) - 5) - 6) - 7) - 8) - 9) [10]
→ foldl (-) ((((((((((0-1) - 2) - 3) - 4) - 5) - 6) - 7) - 8) - 9) - 10) []
→ ((((((((((0-1) - 2) - 3) - 4) - 5) - 6) - 7) - 8) - 9) - 10)
→ (((((((((-1 - 2) - 3) - 4) - 5) - 6) - 7) - 8) - 9) - 10)
→ ((((((((-3 - 3) - 4) - 5) - 6) - 7) - 8) - 9) - 10)
→ (((((((-6 - 4) - 5) - 6) - 7) - 8) - 9) - 10)
→ ((((((-10 - 5) - 6) - 7) - 8) - 9) - 10)
→ (((((-15 - 6) - 7) - 8) - 9) - 10)
→ ((((-21 - 7) - 8) - 9) - 10)
→ (((-28 - 8) - 9) - 10)
→ ((-36 - 9) - 10)
→ (-45 - 10)
→ -55

Foldl and Foldr Notes
2

Foldr:
- Here’s the function definition and implementation of foldr:

foldr :: (a -> b -> b) -> b -> [a] -> b
-- if the list is empty, the result is the initial value z; else
-- apply f to the first element and the result of folding the rest
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

- Note: foldr consumes the list left to right but evaluates from right to left.
- With foldl, the binary function has the current value as the first parameter and the

accumulator as the second one.
- E.g. foldr (-) 0 [1..10] = -5

foldr (-) 0 [1..10]
→ 1 - (foldr (-) 0 [2..10])
→ 1 - (2 - (foldr (-) 0 [3..10]))
→ 1 - (2 - (3 - (foldr (-) 0 [4..10])))
→ 1 - (2 - (3 - (4 - (foldr (-) 0 [5..10]))))
→ 1 - (2 - (3 - (4 - (5 - (foldr (-) 0 [6..10])))))
→ 1 - (2 - (3 - (4 - (5 - (6 - (foldr (-) 0 [7..10]))))))
→ 1 - (2 - (3 - (4 - (5 - (6 - (7 - (foldr (-) 0 [8..10])))))))
→ 1 - (2 - (3 - (4 - (5 - (6 - (7 - (8 - (foldr (-) 0 [9..10]))))))))
→ 1 - (2 - (3 - (4 - (5 - (6 - (7 - (8 - (9 - (foldr (-) 0 [10])))))))))
→ 1 - (2 - (3 - (4 - (5 - (6 - (7 - (8 - (9 - (10 - (foldr (-) 0 []))))))))))
→ 1 - (2 - (3 - (4 - (5 - (6 - (7 - (8 - (9 - (10)))))))))
→ 1 - (2 - (3 - (4 - (5 - (6 - (7 - (8 - (-1))))))))
→ 1 - (2 - (3 - (4 - (5 - (6 - (7 - (9)))))))
→ 1 - (2 - (3 - (4 - (5 - (6 - (-2))))))
→ 1 - (2 - (3 - (4 - (5 - (8)))))
→ 1 - (2 - (3 - (4 - (-3))))
→ 1 - (2 - (3 - (7)))
→ 1 - (2 - (-4))
→ 1 - (6)
→ -5

CSCC24 Week 6 Notes
1

Functor:
- Functor in Haskell is a kind of functional representation of different types which can be

mapped over. It is a high level concept of implementing polymorphism. Types such as
List, Map, Tree, etc. are instances of the Haskell Functor.

- Functor is a function which takes a function and returns another function.
- The Functor typeclass is basically for things that can be mapped over.
- A Functor is an inbuilt class with a function definition like:

class Functor f where
 fmap :: (a -> b) -> f a -> f b → fmap takes a function and a functor and applies the
function on the functor.

- Recall the map function. map f [x, y, z] = [f x, f y, f z]
The map function can be applied to nothing more than a list of values (where values are
of any type) whereas the fmap function can be applied to many more data types, all of
which belong to the functor class (e.g. maybe, tuples, lists, etc.). Since the "list of values"
data type is also a functor, because it provides an implementation for it, then fmap can
be applied to is as well producing the very same result as map. In fact, map is just a
fmap that works only on lists. The difference between map and fmap lies in their usage.
Functor enables us to implement some more functionalists in different data types, like
"Just" and "Nothing".

- E.g. Consider the below code.

Notice that map and fmap produce the same results on a list, but map doesn’t work for
types such as “Just” or “Nothing”, while fmap does.

CSCC24 Week 6 Notes
2

- This is the standard library map function (map f [x, y, z] = [f x, f y, f z]). Here’s an fmap
implementation:
fmap_List :: (a -> b) -> [] a -> [] b
-- "[] a" means "[a]" in types.
fmap_List f [] = []
fmap_List f (x:xs) = f x : fmap_List f xs

- This is the definition of the Maybe type from the standard library:
data Maybe a = Nothing | Just a
Note: There are two perspectives for the Maybe type:

- It's like a list of length 0 or 1.
- It models having two possibilities: “no answer” and “here's the answer”.

Here’s an fmap implementation:
fmap_Maybe :: (a -> b) -> Maybe a -> Maybe b
fmap_Maybe f Nothing = Nothing
fmap_Maybe f (Just a) = Just (f a)

- This is the definition of the Either type from the standard library:
data Either e a = Left e | Right a
It's like Maybe, but the “no answer” case carries extra data, perhaps some kind of
reason for why “no answer”.
Here’s an fmap implementation:
fmap_Either :: (a -> b) -> (Either e) a -> (Either e) b
fmap_Either f (Left e) = Left e
fmap_Either f (Right a) = Right (f a)

- Note: fmap must satisfy some axioms/laws:
1. Identity axiom/Functor Identity:

- The first functor law states that if we map the id function over a functor,
the functor that we get back should be the same as the original functor. If
we write that a bit more formally, it means that fmap id = id. So
essentially, this says that if we do fmap id over a functor, it should be the
same as just calling id on the functor. Id is the identity function, which just
returns its parameter unmodified. It can also be written as \x -> x.

- E.g.

2. fmap fusion/fmap is a homomorphism:

- The second law says that composing two functions and then mapping the
resulting function over a functor should be the same as first mapping one

CSCC24 Week 6 Notes
3

function over the functor and then mapping the other one. Formally
written, that means that fmap (f . g) = fmap f . fmap g. Or to write it in
another way, for any functor F, the following should hold:
fmap (f . g) F = fmap f (fmap g F).

- Doing fmap g (fmap f xs) should get the same result as doing
fmap (\x -> g (f x)) xs
I.e.
fmap g . fmap f = fmap (g . f)

- Note: We can do fmap Just [1]. This is because types are functions.
E.g.

- Functor on its own does not have much basic practical use, apart from providing a

common name “fmap”, but it is much more useful when combined with the Applicative
and Monad methods. It also has an advanced practical use. On the other hand, Functor
is extremely important in category theory.

Applicative:
- An Applicative Functor is a normal Functor with some extra features provided by the

Applicative Type Class. It is found in the Control.Applicative module and to use it, we
need to do import Control.Applicative.

- The class is defined like such:
class (Functor f) => Applicative f where
 pure :: a -> f a → Pure takes a value and returns a functor of that value.
 (<*>) :: f (a -> b) -> f a -> f b → <*> takes a functor with a function in it and another
 functor and applies the function to the second functor.
 liftA2 :: (a -> b -> c) -> f a -> f b -> f c → liftA2 takes a function and 2 functors and
 applies the function on the 2 functors.
 -- And default implementations because <*> and liftA2 are equivalent.
 liftA2 f as bs = fmap f as <*> bs
 fs <*> as = liftA2 (\f a -> f a) fs as
 -- And a couple of other methods with easy default implementations.

Looking at the first line, it states the definition of the Applicative class and it also
introduces a class constraint. It says that if we want to make a type constructor part of
the Applicative typeclass, it has to be in Functor first. That's why if we know that if a type
constructor is part of the Applicative typeclass, it's also in Functor, so we can use fmap
on it.

CSCC24 Week 6 Notes
4

The first method it defines is called pure. Its type declaration is pure :: a -> f a. “f” plays
the role of our applicative functor instance here. pure should take a value of any type
and return an applicative functor with that value inside it. We take a value and we wrap it
in an applicative functor that has that value as the result inside it.

pure for [], Maybe, and Either e work as follows:
-- [] version
pure a = [a]

-- Maybe version
pure a = Just a

-- Either e version
pure a = Right a

pure plays two roles:

1. The degenerate case when you have a 0-ary function and 0 lists, kind of.
2-ary, liftA2 :: (t1 -> t2 -> a) -> f t1 -> f t2 -> f a
1-ary, fmap :: (t1 -> a) > f t1 -> f a
0-ary, pure :: a -> f a

2. fmap can be derived from pure and <*>.
I.e. fmap f xs = pure f <*> xs

The second function it defines is <*>. It has a type declaration of f (a -> b) -> f a -> f b.
<*> is sort of a beefed up fmap. Whereas fmap takes a function and a functor and
applies the function inside the functor, <*> takes a functor that has a function in it and
another functor and sort of extracts that function from the first functor and then maps it
over the second one.
Note: We can use lambda functions with <*>.
E.g.

The third function it defines is liftA2. liftA2 just applies a function between two
applicatives, hiding the applicative style that we've become familiar with. The reason
we're looking at it is because it clearly showcases why applicative functors are more
powerful than just ordinary functors. With ordinary functors, we can just map functions
over one functor. But with applicative functors, we can apply a function between several
functors. It's also interesting to look at this function's type as (a -> b -> c) -> (f a -> f b ->
f c). When we look at it like this, we can say that liftA2 takes a normal binary function
and promotes it to a function that operates on two functors.

CSCC24 Week 6 Notes
5

E.g.
liftA2 (+) [1,2,3] [4,5,6]
= [1+4, 1+5, 1+6, 2+4, 2+5, 2+6, 3+4, 3+5, 3+6]
= [5,6,7,6,7,8,7,8,9]

E.g.
liftA2 (-) [10,20,30] [1,2,3]
= [10-1, 10-2, 10-3, 20-1, 20-2, 20-3, 30-1, 30-2, 30-3]
= [9,8,7,19,18,17,29,28,27]

Note: We can use lambda functions with liftA2.
E.g.

- Here is the Applicative instance implementation for Maybe.
instance Applicative Maybe where
 pure = Just
 Nothing <*> _ = Nothing
 (Just f) <*> something = fmap f something

First off, pure. We said earlier that it's supposed to take something and wrap it in an
applicative functor. We wrote pure = Just, because value constructors like Just are
normal functions. We could have also written pure x = Just x.

Next up, we have the definition for <*>. We can't extract a function out of a Nothing,
because it has no function inside it. So we say that if we try to extract a function from a
Nothing, the result is a Nothing.

If the first parameter is not a Nothing, but a Just with some function inside it, we say that
we then want to map that function over the second parameter. This also takes care of
the case where the second parameter is Nothing, because doing fmap with any function
over a Nothing will return a Nothing.

So for Maybe, <*> extracts the function from the left value if it's a Just and maps it over
the right value. If any of the parameters is Nothing, Nothing is the result.

CSCC24 Week 6 Notes
6

E.g.
Notice that if there’s Nothing on either side of the <*>, the result is nothing.

Notice that the 2 statements below give the same result.

- The Applicative methods should satisfy the following axioms:
1. Applicative subsumes Functor

fmap f xs = pure f <*> xs
2. Applicative left-identity

pure id <*> xs = xs
-- Compare with fmap identity! fmap id xs = xs

3. Applicative associativity, composition
gs <*> (fs <*> xs) = ((pure (.) <*> gs) <*> fs) <*> xs
 = (liftA2 (.) gs fs) <*> xs
-- Analogy: g (f x) = (g . f) x
-- It may help to elaborate the types. Assume:
-- xs :: f a
-- fs :: f (a -> b)
-- gs :: f (b -> c)
-- (.) :: (b -> c) -> (a -> b) -> (a -> c)
-- Try to determine the types of the subexpressions

4. pure fusion, pure is a homomorphism
pure f <*> pure x = pure (f x)
fmap f (pure x) = pure (f x)

5. pure interchange, almost right-identity
fs <*> pure x = pure (\f -> f x) <*> fs
 = fmap (\f -> f x) fs

- The first corollary is that the Applicative axioms imply the Functor axioms given fmap f xs
= pure f <*> xs.
Functor identity is immediate from Applicative left-identity. To deduce fmap fusion:
fmap g (fmap f xs) in Applicative terms
= pure g <*> (pure f <*> xs) associativity
= ((pure (.) <*> pure g) <*> pure f) <*> xs pure fusion
= (pure ((.) g) <*> pure f) <*> xs pure fusion
= pure ((.) g f) <*> xs infix notation
= pure (g . f) <*> xs in Functor terms
= fmap (g . f) xs

CSCC24 Week 6 Notes
7

- The second corollary is that
liftA3 (\x y z -> g x (f y z)) xs ys zs
can be done by the following two equivalent ways:

1. (fmap (\x y z -> g x (f y z)) xs <*> ys) <*> zs
2. fmap g xs <*> (fmap f ys <*> zs)

Fmap, LiftA2 & LiftA3 Notes
1

Fmap:
- fmap :: Functor f => (a -> b) -> f a -> f b
- This means that fmap takes a function and a functor and applies the function over the

functor.
- E.g.

- Can be thought of as liftA1. This will be explained below.

<*>:
- Also called ap.
- (<*>) :: f (a -> b) -> f a -> f b
- <*> takes a functor with a function in it and another functor and applies the function to

the second functor.
- E.g.

- Note: You need to do import Control.Applicative to use ap.

LiftA2:
- liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
- If you compare the above line with fmap, you’ll see that they’re very similar, but fmap

takes 1 functor while applicative takes 2. Furthermore, the function fmap uses only takes
in 1 argument, while the function liftA2 uses takes 2 arguments. This is why we can think
of fmap as liftA1.

- E.g.

Fmap, LiftA2 & LiftA3 Notes
2

- We can use fmap and <*> to implement liftA2.
Here’s an implementation of fmap, pure, <*> and liftA2 for the functor Maybe.

Note that for liftA2, we’re not using fmap and <*> to implement it.
Here’s how we can use fmap and <*> to implement liftA2.
liftA2 f xs ys = (fmap f xs) <*> ys
E.g.

The reason why liftA2 f xs ys = (fmap f xs) <*> ys is because fmap applies the
function, f, on xs, so xs is a functor with a function in it, and then <*> applies that
function onto ys.

LiftA3:
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
- This is similar to liftA2, but it takes 3 arguments instead of 2.
- We can implement liftA3 using fmap and <*>.

liftA3 f xs ys zs = (fmap f xs) <*> ys <*> zs
E.g.

- We can implement liftA3 using liftA2 and <*>.

liftA3 f xs ys zs = (liftA2 f xs ys) <*> zs

Fmap, LiftA2 & LiftA3 Notes
3

E.g.

This is because (fmap f xs) <*> ys is equivalent to liftA2 f xs ys.

In general:
- If you have liftAn, where n > 1, you can implement in the following way:

1. liftAn f a b c … z = (fmap f a) <*> b <*> c … <*> z
2. liftAn f a b c … y z = (liftA(n-1) f a b c … y) <*> z

CSCC24 Week 8 Notes
1

Parameterized “container” types as effect types:
- Think of [], Maybe, Either e as types of effects or effectful programs, not always as types

of data structures.
- “Effect” is very broad and usually not given a precise definition, but if you know the

phrase “function with a side-effect”, that's the idea. In the Haskell culture, it refers to
things a mathematical function cannot do, e.g. no answer, multiple answers, accessing
state variables, performing I/O—the latter two lead to getting different answers at
different times.

- f :: Int -> String in Haskell means that f 4 :: String is the same string every time, without
effect. If some specific kind of effect is desired, we make a parameterized type E to
Maybe or [] to represent it and change types to f :: Int -> E String, so f 4 :: E String
does not have to give the same string every time, instead just the same “effectful action”
every time.

- It suffices to focus on “E String” (so without “Int ->”) and think of it as the type of effectful
programs that give string answers. E.g., if m1, m2 :: Maybe String, think of them as two
programs that give string answers (the effect is that it could fail).

- In this frame of mind, the methods of Functor, Applicative, and later Monad are
connectives—combining basic effectful programs into complex ones. E.g. liftA2 (++) m1
m2 combines m1 and m2.

- Consider “Maybe”:
- foo :: Maybe Int now means a program that may succeed and return an Int

(conveyed by Just), or may fail (conveyed by Nothing).
- Suppose f :: Int -> String.
- fmap f foo :: Maybe String now means a program that runs foo, but converts

the answer, if any, using f.
- pure 4 :: Maybe Int now means a program that succeeds and returns 4.

Note that it avoids using Maybe's effect of failure.
- Suppose bar :: Maybe Int.
- liftA2 (+) foo bar :: Maybe Int now means a composite program that runs foo to

try to obtain a number. If running foo is successful, it runs bar. If that is
successful too, the overall answer is the sum.

- E.g. I have a recipMay function for reciprocals, but to better handle
division-by-zero, I use Maybe to convey successes and failures. I then use it to
write an addRecip function to add two reciprocals, again involving Maybe in
anticipation of failure. This is my first version:
recipMay :: Double -> Maybe Double
recipMay a | a == 0 = Nothing
 | otherwise = Just (1 / a) -- or: pure (1 / a)

CSCC24 Week 8 Notes
2

addRecipV1 x y =
 case recipMay x of
 Nothing -> Nothing
 Just x_recip -> case recipMay y of
 Nothing -> Nothing
 Just y_recip -> Just (x_recip + y_recip)

This is my second version. It uses the new way of thinking:
recipMay :: Double -> Maybe Double
recipMay a | a == 0 = Nothing
 | otherwise = Just (1 / a) -- or: pure (1 / a)

addRecipV2 :: Double -> Double -> Maybe Double
addRecipV2 x y = liftA2 (+) (recipMay x) (recipMay y)

Monads:
- Monads are just beefed up applicative functors.
- A monad is a way to structure computations in terms of values and sequences of

computations using those values. Monads allow the programmer to build up
computations using sequential building blocks, which can themselves be sequences of
computations. The monad determines how combined computations form a new
computation and frees the programmer from having to code the combination manually
each time it is required.

- It is useful to think of a monad as a strategy for combining computations into more
complex computations.

- Monads chain operations in some specific, useful way.
- Monads apply a regular function to a wrapped value and return a wrapped value. This is

similar to what a functor does. The difference between a monad and a functor is that with
monads, the functions aren’t expecting a wrapped value.

- E.g. Consider the code and output below:

What if we wanted to pass in (Just 10) to half?

It gives an error.

CSCC24 Week 8 Notes
3

However, if we do (Just 10) >>= half, we get back Just 5, as shown below.

In this example, the function, half, isn’t expecting a wrapped value of (Just 10). We did
half x = …, not half (Just x) = …. However, by using >>=, we were able to apply (Just 10)
to the half function. Here’s what >>= is doing behind the scenes:

- When we do “Just 10 >>= …”, the >>= takes the 10, only.
- Hence, when we did (Just 10) >>= half, it was like doing half 10.

- We can also chain monads.
E.g.

- The monad class is defined like this:

class Applicative m => Monad m where
 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b → >>= takes in a monadic value and a function that
 takes in a regular value but outputs a monadic value and applies the function on the
 monadic value.
 E.g. Suppose you have something like Just x >>= \b -> …, here “b” is not wrapped in
 “Just”. This is because the lambda function takes a regular value.

 (>>) :: m a -> m b -> m b
 x >> y = x >>= _ -> y

 fail :: String -> m a
 fail msg = error msg

The first function that the Monad type class defines is return. It's the same as pure, only
with a different name. Its type is (Monad m) => a → m a. It takes a value and puts it in a
minimal default context that still holds that value. In other words, it takes something and
wraps it in a monad. It always does the same thing as the pure function from the
Applicative type class.
Note: return is nothing like the return that's in most other languages. It doesn't end
function execution or anything, it just takes a normal value and puts it in a context.
It is here for historical reasons (because Applicative is more recent). Do not think of
return in terms of control flow. It does not exit anything.

The next function is >>=, or bind. It's like function application, only instead of taking a
normal value and feeding it to a normal function, it takes a monadic value (a value with a
context) and feeds it to a function that takes a normal value but returns a monadic value.

CSCC24 Week 8 Notes
4

Next up, we have >>. It’s default implementation is foo >> bar = foo >>= _ -> bar. It
comes in handy when you don't need foo's answer, only its effect. We call this operator
"then". We use this function when we want to perform actions in a certain order, but don't
care what the result of one is. Consider the example below:

The final function of the Monad type class is fail. We never use it explicitly in our code.
Instead, it's used by Haskell to enable failure in a special syntactic construct for monads.

- The Monad methods satisfies these axioms:
1. Left Identity Law: This law states that if we take a value, put it in a default

context with return and then feed it to a function by using >>=, it's the same as
just taking the value and applying the function to it. To put it formally:
return x >>= k = k x
E.g.

Notice that both statements get the same result.

2. Right Identity Law: This law states that if we have a monadic value and we use
>>= to feed it to return, the result is our original monadic value. Formally:
m >>= return = m
E.g.

3. Associativity: This law says that when we have a chain of monadic function

applications with >>=, it shouldn't matter how they're nested. Formally written:
Doing (m >>= f) >>= g is just like doing m >>= (\x -> f x >>= g)

Associative laws justify re-grouping. This is important for many refactoring and
implementing long chains by recursion.

- Monad subsumes Applicative and Functor. From return and >>= we can get the methods
of Applicative and Functor:
fmap f xs = xs >>= (\x -> return (f x))
liftA2 op xs ys = xs >>= (\x -> ys >>= (\y -> return (op x y)))

CSCC24 Week 8 Notes
5

- Monads need to use both applicative and functor.
E.g. Consider the code and output below.

Now, if I add the applicative and functor instances, then I don’t get that compilation error.

CSCC24 Week 8 Notes
6

- Examples of Maybe2:

CSCC24 Week 9 Notes
1

State Monad:
- The state monad is a built-in monad in Haskell that allows for chaining of a state

variable through a series of function calls, to simulate stateful code. It is defined as:
newtype State s a = State { runState :: (s -> (a,s)) }

- The Haskell type State describes functions that consume a state and produce both a
result and an updated state, which are given back in a tuple.

- A few basic operations are provided below. Furthemore, “State s” is an instance of
Functor, Applicative, and Monad, so you have connectives to chain up basic operations
too.

1. -- "get" reads and returns the current value of the state variable.
get :: State s s
get = State (\s -> (s,s))

2. -- "put s1" sets the state variable to s1. It returns the 0-tuple because there
-- is no information to return.
put :: s -> State s ()
put newState = State (\s -> (newState, ()))

3. -- functionize prog s0 runs prog starting with initial state value s0 and gives
-- you the final answer.
functionize :: State s a -> s -> a

- E.g. We want to build a binary tree out of given elements, inorder, balanced.
I.e. buildTree [a, b, c, d, e, f, g] means at d, which is the root, recursively create a,b,c in
left subtree, and e,f,g in right subtree. We need to count length for halving. A
non-obvious but linear-time strategy is:

- Count length just once.
- State variable holds unused elements (initially all).
- Recursive helper takes parameter n, uses the first n elements from state var to

build tree. Algorithm:
- Split n into n = m1 + 1 + m2, m1 is left subtree size, m2 is right subtree

size, and 1 element for the middle node.
- Recursive call: build tree of m1 elements, this will be the left subtree.
- Take out one element from state var, this will be for the middle node.
- Recursive call: build tree of m2 elements, this will be the right subtree.
- Compose the middle node, it's my answer

Here’s the code:
-- Recall: data BinTree a = BTNil | BTNode a (BinTree a) (BinTree a)

-- buildTreeHelper n: Use n elements from [a] state var to build tree.
-- Precondition: n <= length of state var.
buildTreeHelper :: Int -> State [a] (BinTree a)
buildTreeHelper 0 = pure BTNil
buildTreeHelper n =
 buildTreeHelper m1 -- Make left subtree, m1 elements, call it lt.
 >>= \lt -> get
 >>= \(x:xt) -> put xt -- Which elements remaining? Take one for myself.
 >> buildTreeHelper m2 -- Make right subtree, m2 elements, call it rt.
 >>= \rt -> pure (BTNode x lt rt) -- Put it together, this is my answer.

CSCC24 Week 9 Notes
2

 where
 n' = n - 1
 m1 = div n' 2
 m2 = n' - m1

buildTree :: [a] -> BinTree a
buildTree xs = functionize (buildTreeHelper (length xs)) xs
-- Whole list for initial state. Use all to build tree.

In the example above,
>>= \lt -> get
>>= \(x:xt) -> put xt
you need to use bind, >>=, to get the return value of get. In this case, (x:xt) is the return
value of get.

- The basic idea of state monad is to have a state transition function instead, like s→s,
and have some starter function, functionize, that feeds it the initial value. However, we
also want it to give an answer and not a state. So s→(s,a) is a function from the old-state
to a pair of the new-state and answer.

- E.g.
data State s a = MkState (s -> (s, a))

-- Unwrap MkState.
deState :: State s a -> s -> (s, a)
deState (MkState stf) = stf

functionize :: State s a -> s -> a
functionize prog s0 = snd (deState prog s0)

get :: State s s
get = MkState (\s0 -> (s0, s0))
-- old state = s0, new state = old state = s0, answer s0 too.

put :: s -> State s ()
put s = MkState (\s0 -> (s , ()))
-- ignore old state, new state = s, answer the 0-tuple ().

instance Functor (State s) where
 -- fmap :: (a -> b) -> State s a -> State s b
 fmap f (MkState stf) = MkState
 (\s0 ->
 -- Goal: Like stf but use f to convert a to b
 -- old state = s0, give to stf for new state s1 and answer a
 case stf s0 of (s1, a) ->
 -- overall new state is also s1, but change answer to f a
 (s1, f a))

CSCC24 Week 9 Notes
3

testStateFunctor = deState (fmap length program) 10
 where
 program :: State Integer String
 program = MkState (\s0 -> (s0+2, "hello"))
-- should give (12, 5)

instance Applicative (State s) where
 -- pure :: a -> State s a
 -- Goal: Give the answer a and try not to have an effect.
 -- "effect" for State means state change.
 pure a = MkState (\s0 -> (s0, a))
 -- so new state = old state

 -- liftA2 :: (a -> b -> c) -> State s a -> State s b -> State s c
 --
 -- State transition goal:
 -- overall old state
 -- --1st-program--> intermediate state
 -- --2nd-program--> overall new state
 --
 -- (Why not the other order? Actually would be legitimate, but we usually
 -- desire liftA2's order to be consistent with >>='s order.)
 liftA2 op (MkState stf1) (MkState stf2) = MkState
 (\s0 ->
 -- overall old state = s0, give to stf1
 case stf1 s0 of { (s1, a) ->
 -- intermediate state = s1, give to stf2
 case stf2 s1 of { (s2, b) ->
 -- overall new state = s2
 -- overall answer = op a b
 (s2, op a b) }})

testStateApplicative = deState (liftA2 (:) prog1 prog2) 10
 where
 prog1 :: State Integer Char
 prog1 = MkState (\s0 -> (s0+2, 'h'))
 prog2 :: State Integer String
 prog2 = MkState (\s0 -> (s0*2, "ello"))
-- should give (24, "hello"). 24 = (10+2)*2.

CSCC24 Week 9 Notes
4

instance Monad (State s) where
 return = pure

 -- (>>=) :: State s a -> (a -> State s b) -> State s b
 -- Goal:
 -- 1. overall old state --1st-program--> (intermediate state, a)
 -- 2. give a and intermediate state to the 2nd program.
 MkState stf1 >>= k = MkState
 (\s0 ->
 -- overall old state = s0, give to stf1
 case stf1 s0 of { (s1, a) ->
 -- k is waiting for the answer a
 -- and also the intermediate state s1
 -- technicality: "(k a) s1" is conceptually right but nominally a
 -- type error because (k a) :: State s b, not s -> (s, b)
 -- Ah but deState can unwrap! (Or use pattern matching.)
 deState (k a) s1 })

Dependency injection, Template method, Mock testing:
- Here is the first version of my file format checker for my toy file format. The first three

characters should be A, L, and newline.
toyCheckV1 :: IO Bool
toyCheckV1 =
 getChar
 >>= \c1 -> getChar
 >>= \c2 -> getChar
 >>= \c3 -> return ([c1, c2, c3] == "AL\n")

- We can also use dependency injection to test it. One way of doing this is to define our
own type class for the relevant, permitted operations.
class Monad f => MonadToyCheck f where
 toyGetChar :: f Char
-- Simplifying assumptions: Enough characters, no failure. A practical version
-- should add methods for raising and catching EOF exceptions.

The checker logic should be polymorphic in that type class.

toyCheckV2 :: MonadToyCheck f => f Bool
toyCheckV2 =
 toyGetChar
 >>= \c1 -> toyGetChar
 >>= \c2 -> toyGetChar
 >>= \c3 -> return ([c1, c2, c3] == "AL\n")

Only things toyCheckV2 can do: toyGetChar, monad methods, purely functional
programming. Because the user chooses f. And toyCheckV2 doesn't even know what it
is. All it knows is it can call toyGetChar.

- Now we can instantiate in two different ways, one way for production code, another way
for mock testing.

CSCC24 Week 9 Notes
5

- For production code:
instance MonadToyCheck IO where
 toyGetChar = getChar

realProgram :: IO Bool
realProgram = toyCheckV2

- For purely functional mock testing:
data Feeder a = MkFeeder (String -> (String, a))
-- Again, simplifying assumptions etc. But basically like the state monad, with
-- the state being what's not yet consumed in the string.

-- Unwrap MkFeeder.
unFeeder :: Feeder a -> String -> (String, a)
unFeeder (MkFeeder sf) = sf

instance Monad Feeder where
 return a = MkFeeder (\s -> (s, a))
 prog1 >>= k = MkFeeder (\s0 -> case unFeeder prog1 s0 of
 (s1, a) -> unFeeder (k a) s1)

instance MonadToyCheck Feeder where
 -- toyGetChar :: Feeder Char
 toyGetChar = MkFeeder (\(c:cs) -> (cs, c))

instance Functor Feeder where
 fmap f p = p >>= \a -> return (f a)

instance Applicative Feeder where
 pure a = MkFeeder (\s -> (s, a))
 pf <*> pa = pf >>= \f -> pa >>= \a -> return (f a)

testToyChecker2 :: String -> Bool
testToyChecker2 str = snd (unFeeder toyCheckV2 str)

toyTest1 = testToyChecker2 "ALhello" -- should be False
toyTest2 = testToyChecker2 "AL\nhello" -- should be True

- Here’s the code in its entirety:
class Monad f => MonadToyCheck f where
 toyGetChar :: f Char
-- Simplifying assumptions: Enough characters, no failure. A practical version
-- should add methods for raising and catching EOF exceptions.

toyCheckV2 :: MonadToyCheck f => f Bool
toyCheckV2 =
 toyGetChar
 >>= \c1 -> toyGetChar
 >>= \c2 -> toyGetChar
 >>= \c3 -> return ([c1, c2, c3] == "AL\n")

CSCC24 Week 9 Notes
6

data Feeder a = MkFeeder (String -> (String, a))
-- Again, simplifying assumptions etc. But basically like the state monad, with
-- the state being what's not yet consumed in the string.

-- Unwrap MkFeeder.
unFeeder :: Feeder a -> String -> (String, a)
unFeeder (MkFeeder sf) = sf

instance Monad Feeder where
 return a = MkFeeder (\s -> (s, a))
 prog1 >>= k = MkFeeder (\s0 -> case unFeeder prog1 s0 of
 (s1, a) -> unFeeder (k a) s1)

instance MonadToyCheck Feeder where
 -- toyGetChar :: Feeder Char
 toyGetChar = MkFeeder (\(c:cs) -> (cs, c))

instance Functor Feeder where
 fmap f p = p >>= \a -> return (f a)

instance Applicative Feeder where
 pure a = MkFeeder (\s -> (s, a))
 pf <*> pa = pf >>= \f -> pa >>= \a -> return (f a)

testToyChecker2 :: String -> Bool
testToyChecker2 str = snd (unFeeder toyCheckV2 str)

toyTest1 = testToyChecker2 "ALhello" -- should be False
toyTest2 = testToyChecker2 "AL\nhello" -- should be True

- E.g.

Context Free Grammar:

- A context-free grammar is a set of recursive rules used to generate patterns of strings.
- Parser programs in compilers can be generated automatically from context-free

grammars.
- Context-free grammars have the following components:

- A set of terminal symbols which are the characters that appear in the
language/strings generated by the grammar. Terminal symbols never appear on
the left-hand side of the production rule and are always on the right-hand side.

- A set of nonterminal symbols (or variables) which are placeholders for
patterns of terminal symbols that can be generated by the nonterminal symbols.
These are the symbols that will always appear on the left-hand side of the

CSCC24 Week 9 Notes
7

production rules, though they can be included on the right-hand side. The strings
that a CFG produces will contain only symbols from the set of nonterminal
symbols.

- A set of production rules which are the rules for replacing nonterminal symbols.
Production rules have the following form: variable → string of variables and
terminals.

- A start symbol which is a special nonterminal symbol that appears in the initial
string generated by the grammar.

- To create a string from a context-free grammar, follow these steps:
- Begin the string with a start symbol.
- Apply one of the production rules to the start symbol on the left-hand side by

replacing the start symbol with the right-hand side of the production.
- Repeat the process of selecting nonterminal symbols in the string, and

replacing them with the right-hand side of some corresponding production,
until all nonterminals have been replaced by terminal symbols. Note, it could
be that not all production rules are used.

- E.g. A context-free grammar looks like this bunch of rules:
Rule 1. E → E + E
Rule 2. E → M
Rule 3. M → M × M
Rule 4. M → A
Rule 5. A → 0
Rule 6. A → 1
Rule 7. A → (E)
E, M, A are non-terminal symbols or variables. When you see them, you apply rules to
expand. One of them is designated as the start symbol. You always start from it. Here,
E is the start symbol.
+, ×, 0, 1, (,) are terminal symbols. They are the characters you want in your language.

- Derivation/generation is a finite sequence of applying the rules until all non-terminal
symbols are gone. We often aim for a specific final string.

- E.g.
 E → M (By Rule 2)

→ M × M (By Rule 3)
→ A × M (By Rule 4)
→ 1 × M (By Rule 6)
→ 1 × A (By Rule 4)
→ 1 × (E) (By Rule 7)
→ 1 × (E + E) (By Rule 1)
→ 1 × (M + E) (By Rule 2)
→ 1 × (A + E) (By Rule 4)
→ 1 × (0 + E) (By Rule 5)
→ 1 × (0 + M) (By Rule 2)
→ 1 × (0 + M × M) (By Rule 3)
→ 1 × (0 + A × M) (By Rule 4)
→ 1 × (0 + 1 × A) (By Rule 6)
→ 1 × (0 + 1 × 1) (By Rule 6)

- Context-free grammars can support matching parentheses and unlimited nesting.
Backus-Naur Form (BNF):

CSCC24 Week 9 Notes
8

- Backus-Naur Form is a computerized, practical notation for CFGs.
- Surround non-terminal symbols by <>.
- Allow multi-letter names.

Note: In some versions, we don’t need <> around non-terminal symbols.
- Merge rules with the same LHS.
- In some versions, we surround terminal strings by single or double quotes.
- Use ::= for →.
- Our example grammar in BNF:

<expr> ::= <expr> “+” <expr> | <mul>
<mul> ::= <mul> “*” <mul> | <atom>
<atom> ::= “0” | “1” | “(“ <expr> “)”

Extended Backus-Naur Form (EBNF):
- Use {...} for 0 or more occurrences.
- Use [...] for 0 or 1 occurrences.
- In some versions, no <> is needed around non-terminal symbols.

Parse Tree/Derivation Tree:
- A parse tree/derivation tree presents a derivation with more structure (tree), less

repetition.
- E.g. This example generates 0 + 0 + 0.

This is how we would write the example using derivation:
 E → E + E (By Rule 1)

→ E + E + E (By Rule 1)
→ M + E + E (By Rule 2)
→ M + M + E (By Rule 2)
→ M + M + M (By Rule 2)
→ A + M + M (By Rule 4)
→ A + A + M (By Rule 4)
→ A + A + A (By Rule 4)
→ 0 + A + A (By Rule 5)
→ 0 + 0 + A (By Rule 5)
→ 0 + 0 + 0 (By Rule 5)

- In parse trees:
- Internal nodes are non-terminal symbols.
- Both operators and operands are terminal symbols at leaves.
- The whole string is recorded, just scattered.

CSCC24 Week 9 Notes
9

- The purpose is to help visualize derivation and grammar as well as making
writing the derivations easy and simple.

- When 2 or more different trees generate the same output, we say that the grammar is
ambiguous.
E.g. Two different trees generate the same 0 + 0 + 0:

We try to design unambiguous grammars.
CFG ambiguity is undecidable.
Equivalence of two CFGs is also undecidable.

- Note: Generally, the reason we have ambiguity in languages is because there are more
than 1 calls to the same item in 1 line.
E.g. In the above language, we have
<expr> ::= <expr> + <expr>
<mul> ::= <mul> * <mul>
Hence, if we have 0+0+0 or 0*0*0, we can use either <expr> or <mul> for expansion.

- Here is an unambiguous grammar that generates the same language as our ambiguous
grammar example from above.
<expr> ::= <expr> “+” <mul> | <mul>
<mul> ::= <mul> “*” <atom> | <atom>
<atom> ::= “0” | “1” | “(“ <expr> “)”

Left Recursive vs Right Recursive:
- <expr> ::= <expr> “+” <mul>

That is a left recursive rule. The recursion is at the beginning (left).
- <expr> ::= <mul> “+” <expr>

That is a right recursive rule. The recursion is at the end (right).
- Sometimes they convey intentions of left association or right association, but not always.
- They affect some parsing algorithms.
- Recursive descent parsing is a simple strategy for writing a parser.
- For each non-terminal symbol, we create a procedure based on RHS:

- Non-terminal Symbol: Procedure call, possibly mutual recursion. (Thus “recursive
descent”, also “top-down”.)

- Left recursion needs special treatment to avoid infinite loops.
- Terminal Symbol: Consume input and check.
- Alternatives: Look ahead to choose, or try and backtrack.

- Some options for handling left recursion:
- Redesign grammar to not have left recursion.

CSCC24 Week 9 Notes
10

- Many left recursive rules just express left-associating operators. Can be done
without left recursive code.

- E.g.
<sub> ::= <atom> "-" <sub> | <atom>
<atom> ::= "0" | "1" | "(" <sub> ")"

Starting with <sub>, we look at its RHS, which is <atom> "-" <sub> | <atom>.
We see <atom>, which is a non-terminal symbol. Hence, we make a procedure call to
<atom>.
Next, we see a terminal symbol. We check if that terminal symbol is “-”. If it is, we
continue to <sub>. Otherwise, we go to <atom>.
Since the terminal symbol is “-”, we see <sub>, so we make a procedure call to <sub>.
Pseudo-code of recursive descent parser:
sub:

try (atom;
 read; if not "-" then fail;
 sub ;)
if that failed: atom;

atom:

read;
if "0" or "1": success;
if "(": sub;

read; if not ")" then fail;
else: fail;

CSCC24 Week 9 Notes
11

Abstract Syntax Tree (AST) (vs Parse Tree):
- Abstract Syntax Tree General Points:

- Internal nodes are operators/constructs.
An example of a construct is if-then-else.

- Non-terminal symbols are gone or replaced by constructs.
- Many terminal symbols are gone too if they play no role other than nice syntax.

E.g. spaces, parentheses, punctuations
Those bearing content are replaced by appropriate representations and do not
stay as characters.
E.g. The character ’+’ is replaced by a data constructor.
E.g. The character ’0’ is replaced by the number 0.

- The purpose is to present only the essential structure and content, ready for
interpreting, compiling, analyses.

- Parsers usually output abstract syntax trees when successful.
- Comparison of Parse Tree and Abstract Syntax Tree:

Lexical Analysis/Tokenization:

- In principle, grammar and parser can work on characters directly, but it is usually messy.
- In practice, we have 2 stages:

1. We chop character streams into chunks and classify into lexemes/tokens and
we discard spaces. Furthermore, we typically use objects or data representations
instead of the actual strings.
E.g.
" (xa * xb)**25 " →
[Open, Var "xa", Op Mul, Var "xb", Close, Op Exp, NumLiteral 25]
Here, we use the object or data representation “Open” to denote the open
parentheses, “(“. Furthermore, notice the space between “ and (. In the array, the
space isn’t shown.
Note: We can use regular expression to determine what category, variable,
number, operator, etc, an item is.
This step is called lexical analysis/tokenization.

2. Parsing is based on CFG. Terminal symbols are tokens, not characters.

CSCC24 Week 10 Notes
1

Recursive Descent Parsing:
- Recursive descent parsers can be nicely expressed in an embedded domain-specific

language, built from a few primitives and composed using the connectives from Functor,
Applicative, and Monad. There is one more relevant connective type class, Alternative,
for failures and choices.

- The Alternative type class is used for backtracking.
Parser representation:

- Each parser can be represented as a function taking an input string, consuming a prefix
of it, and giving one of:

1. failure
2. success, with unconsumed suffix and answer

- When the result is “success”, it is important to give the unconsumed suffix rather than
losing it. When liftA2 and >>= chain up two parsers, the second parser needs to see the
leftover from the first parser. You can also think of a state variable for the current string
to parse. Overall we are combining two effects, failure and state.

- So we use the below function type to define our parser type:
data Parser a = MkParser (String -> Maybe (String, a))

unParser :: Parser a -> String -> Maybe (String, a)
unParser (MkParser sf1) = sf1

- Each parser, there could be multiple, takes in an input string and consumes the first few
characters of that input string. Then, the parser can either:

1. Declare that this is not what I’m looking for. (Declare failure)
2. Declare that this is what I’m looking for. The parser will give the unconsumed

suffix to the next parser and give an answer. (Declare success)

The parser is a function that takes in a string and returns the rest of the string and an
answer upon success or nothing upon failure.

- We can use unParser to use our parser.
- I use Maybe because I anticipate at most one valid answer, and for simplicity I don't

include error information for failures.
- It is also possible to use [] to anticipate ambiguous grammars and multiple valid

answers, with the empty list for failure.
- Here is the function for using a parser. You give it an input string and it gives you an

overall final answer (success or failure). It discards the final leftover as usually we aren't
interested in it. If you're interested, use unParser above.

runParser :: Parser a -> String -> Maybe a
runParser (MkParser sf) inp = case sf inp of
 Nothing -> Nothing
 Just (_, a) -> Just a
 -- OR: fmap (\(_,a) -> a) (sf inp)

In the case of Nothing, we get Nothing back.
In the case of any string and an answer, a, we get the answer, a, back.

Parsing primitives (character level):
- In this example, a basic parser reads a character and gives it to you. It fails when/if

there’s no character to read.

CSCC24 Week 10 Notes
2

Here’s the code:
anyChar :: Parser Char
anyChar = MkParser sf
 where
 sf "" = Nothing
 sf (c:cs) = Just (cs, c)

E.g.

- In this example, the parser is expecting a specific character and wants to read and check

it. It fails if the character it’s reading is not the expected character or if there’s no
character to read.

Here’s the code:
char :: Char -> Parser Char
char wanted = MkParser sf
 where
 sf (c:cs) | c == wanted = Just (cs, c)
 sf _ = Nothing

E.g.

- In this example, the parser is expecting a character that satisfies a specific condition or

predicate.

Here’s the code:
satisfy :: (Char -> Bool) -> Parser Char
satisfy pred = MkParser sf
 where
 sf (c:cs) | pred c = Just (cs, c)
 sf _ = Nothing

CSCC24 Week 10 Notes
3

If you expect a letter, you say “satisfy isAlpha” (isAlpha is from Data.Char.).
E.g.

- In this example, the parser is checking that the input string is empty. So its

failure/success criterion is the opposite of char's.

Here’s the code:
eof :: Parser ()
eof = MkParser sf
 where
 sf "" = Just ("", ())
 sf _ = Nothing

E.g.

Functor, Applicative, Monad, Alternative connectives:

- The effects of the Parser type are a combination of failure and state. Accordingly, the
implementation of the Functor, Applicative, and Monad methods also combine those of
Maybe and State.
I.e. Checking for Nothing vs Just, and plumbing for state values (input strings and
leftovers).

CSCC24 Week 10 Notes
4

- Fmap, Applicative and Monad implementations:

instance Functor Parser where
 -- fmap :: (a -> b) -> Parser a -> Parser b
 fmap f (MkParser sf) = MkParser sfb
 where
 sfb inp = case sf inp of
 Nothing -> Nothing
 Just (rest, a) -> Just (rest, f a)
 -- OR: fmap (\(rest, a) -> (rest, f a)) (sf inp)

instance Applicative Parser where
 -- pure :: a -> Parser a
 pure a = MkParser (\inp -> Just (inp, a))

 -- liftA2 :: (a -> b -> c) -> Parser a -> Parser b -> Parser c
 -- Consider the 1st parser to be stage 1, 2nd parser stage 2.
 liftA2 op (MkParser sf1) p2 = MkParser g
 where
 g inp = case sf1 inp of
 Nothing -> Nothing
 Just (middle, a) ->
 case unParser p2 middle of
 Nothing -> Nothing
 Just (rest, b) -> Just (rest, op a b)

instance Monad Parser where
 -- return :: a -> Parser a
 return = pure

 -- (>>=) :: Parser a -> (a -> Parser b) -> Parser b
 MkParser sf1 >>= k = MkParser g
 where
 g inp = case sf1 inp of
 Nothing -> Nothing
 Just (rest, a) -> unParser (k a) rest

- In Control.Applicative there are more utility connectives, two of which are useful for
parsing.

(*>) :: Applicative f => f a -> f b -> f b
p *> q = liftA2 (\a b -> b) p q
-- Drop p's answer, give only q's answer. Like (>>) but Applicative.

(<*) :: Applicative f => f a -> f b -> f a
p <* q = liftA2 (\a b -> a) p q
-- Drop q's answer, give only p's answer.

CSCC24 Week 10 Notes
5

Example of chaining up several primitive parsers sequentially: I want a letter, then a
digit, then ‘!’; the answer is the letter and the digit in a string, and drop the ‘!’.
I can use the following code to do it:
lde :: Parser String
lde = liftA2 (\x y -> [x,y]) (satisfy isAlpha) (satisfy isDigit) <* (char '!')

- There is one more type class “Alternative” in the standard library containing methods for

failure and choice.
choice is an associative binary operator, and failure is the identity element.
Note: You need to import it from Control.Applicative.

class Applicative f => Alternative f where
 empty :: f a
 (<|>) :: f a -> f a -> f a
 many :: f a -> f [a] -- has default implementation
 some :: f a -> f [a] -- has default implementation

This type class was actually inspired by parsing.
The <|> operator came from the “|” in BNF, and many and some came from “0 or more
times” and “1 or more times”.

Here’s the implementation for our Parser:
instance Alternative Parser where
 -- empty :: Parser a
 -- Always fail.
 -- Putting empty under if-then-else or some conditional branching makes it
 useful
 empty = MkParser (_ -> Nothing)

 -- (<|>) :: Parser a -> Parser a -> Parser a
 -- Try the 1st one. If success, done; if failure, do the 2nd one
 MkParser sf1 <|> p2 = MkParser g
 where
 g inp = case sf1 inp of
 Nothing -> unParser p2 inp
 j -> j -- the Just case

CSCC24 Week 10 Notes
6

 -- many :: Parser a -> Parser [a]
 -- 0 or more times, maximum munch, collect the answers into a list.
 -- Can use default implementation. And it goes as:
 many p = some p <|> pure []
 -- How to make sense of it: To repeat 0 or more times, first try 1 or more
 -- times! If that fails, then we know it's 0 times, and the answer is the
 -- empty list.

 -- some :: Parser a -> Parser [a]
 -- 1 or more times, maximum munch, collect the answers into a list.
 -- Can use default implementation. And it goes as:
 some p = liftA2 (:) p (many p)
 -- How to make sense of it: To repeat 1 or more times, do 1 time, then 0 or
 -- more times! Use liftA2 to chain up and collect answers.

E.g.

Example use of <|>: I want ‘A’ or ‘B’, followed by ‘0’ or ‘1’:
ab01 :: Parser String
ab01 = liftA2 (\x y -> [x,y]) (char 'A' <|> char 'B') (char '0' <|> char '1')

CSCC24 Week 10 Notes
7

E.g.

- In Control.Applicative there is also a utility connective based on Alternative. It's very

handy when an ENBF rule says “0 or 1 time”.

optional :: Alternative f => f a -> f (Maybe a)
optional p = fmap Just p <|> pure Nothing

E.g.

Furthermore, if we do unParser (char '0') "0xyz", we get back Just ("xyz",'0').
If we do unParser (optional (char '0')) "0xyz", we get back Just ("xyz",Just '0').

Parsing Primitives (lexeme/token level):

- We won't actually use the character-level primitives directly. A reason is that spaces will
get into the way. Another is that we think at the token level. We only use character-level
primitives to implement token-level primitives such as the ones below. Then we use
connectives and token-level primitives for the grammar.

- Whitespace handling convention: Token-level primitives assume there are no leading
spaces, and skip trailing spaces, so the next token primitive may assume no leading

CSCC24 Week 10 Notes
8

spaces. Something else at the outermost level will have to skip initial leading spaces.
This will be discussed later.

-- | Space or tab or newline (unix and windows).
whitespace :: Parser Char
whitespace = satisfy (\c -> c `elem` ['\t', '\n', '\r', ' '])

-- | Consume zero or more whitespaces, maximum munch.
whitespaces :: Parser String
whitespaces = many whitespace

-- | Read a natural number (non-negative integer), then skip trailing spaces.
natural :: Parser Integer
natural = fmap read (some (satisfy isDigit)) <* whitespaces
-- read :: Read a => String -> a
-- For converting string to your data type, assuming valid string. Integer
-- is an instance of Read, and our string is valid, so we can use read.

-- | Read an identifier, then skip trailing spaces. Disallow the listed keywords.
identifier :: [String] -> Parser String
identifier keywords =
 satisfy isAlpha
 >>= \c -> many (satisfy isAlphaNum)
 >>= \cs -> whitespaces
 >> let str = c:cs
 in if str `elem` keywords then empty else return str

-- | Read the wanted keyword, then skip trailing spaces.
keyword :: String -> Parser String
keyword wanted =
 satisfy isAlpha
 >>= \c -> many (satisfy isAlphaNum)
 >>= \cs -> whitespaces
 *> if c:cs == wanted then return wanted else empty

CSCC24 Week 11 Notes
1

CFG Parsing:
- A parser for a context-free grammar can mostly look like the grammar rules. There are

however a few things to watch out for, some tricks, and that lingering issue of initial
leading spaces.

- The parsers here will produce abstract syntax trees of this type:

data Expr
 = Num Integer
 | Var String
 | Prim2 Op2 Expr Expr -- Prim2 op operand operand
 | Let [(String, Expr)] Expr -- Let [(name, rhs), ...] body

data Op2 = Add | Mul

Right-associating Operator:
- Take this simple rule, and suppose we intend the operator to associate to the right:

muls ::= natural { "*" natural } OR muls ::= natural ["*" muls].
The second form uses right recursion to convey right association.
This is perfect for recursive descent parsing.

mulsRv1 :: Parser Expr
mulsRv1 = liftA2 link
 (fmap Num natural)
 (optional (liftA2 (,)
 (operator "*" *> pure (Prim2 Mul))
 mulsRv1))
 where
 link x Nothing = x
 link x (Just (op,y)) = op x y

Note:

We have the line fmap Num natural because we want the return type to be something
in Expr. If we get an integer from natural, we want to add the Num tag to it.
E.g.

CSCC24 Week 11 Notes
2

We have the line (operator "*" *> pure (Prim2 Mul)) because if we see a “*”, we ignore
it and use pure(Prim2 Mul) to represent it.

Lastly, we have the line mulsRv1 because we want to make a recursive call.

E.g. of running mulsRv1:

- Instead of writing this recursion by hand again for every right-associative operator, we

can call a re-factored function and specify just your operand parser and operator parser.

Here is the re-factored general function for right-associative operators.
chainr1 :: Parser a -- ^ operand parser
 -> Parser (a -> a -> a) -- ^ operator parser
 -> Parser a -- ^ whole answer
chainr1 getArg getOp = liftA2 link getArg

 (optional
 (liftA2 (,) getOp (chainr1 getArg getOp)))
 where
 link x Nothing = x
 link x (Just (op,y)) = op x y

So here is how we will implement the rule in practice:
mulsRv2 :: Parser Expr
mulsRv2 = chainr1 (fmap Num natural) (operator "*" *> pure (Prim2 Mul))

E.g.

CSCC24 Week 11 Notes
3

Left-associating operator:
- Suppose we want the operator to associate to the left instead. We cannot code up left

recursion directly, but the trick is to implement the other form of the rule.

Still imagine that the grammar rule is of this form: muls ::= natural { "*" natural }.
Use many for the “{ "*" natural }” part to get a list of tuples of (operator, number).

For example if the input string is “2 * 5 * 3 * 7”, my plan is to:

1. read “2” and get Num 2
2. read “* 5 * 3 * 7” with the help of many and get [(Prim2 Mul, Num 5), (Prim2 Mul,

Num 3), (Prim2 Mul, Num 7)]
3. Then using foldl on the list, starting with Num 2 as the initial accumulator, will

build the left-leaning tree

I.e. The parser still does right-associating recursion, but we will use foldl on the return
value to make it left-associating.

Here’s the code:
mulsLv1 :: Parser Expr
mulsLv1 = liftA2 link
 (fmap Num natural)
 (many (liftA2 (,)
 (operator "*" *> pure (Prim2 Mul))
 (fmap Num natural)))

 where
 link x opys = foldl (\accum (op,y) -> op accum y) x opys

fmap Num natural gets us “Num 2”.

(many (liftA2 (,)
 (operator "*" *> pure (Prim2 Mul))
 (fmap Num natural)))
gets us [(Prim2 Mul, Num 5), (Prim2 Mul, Num 3), (Prim2 Mul, Num 7)]

link x opys = foldl (\accum (op,y) -> op accum y) x opys combines “Num 2” with
[(Prim2 Mul, Num 5), (Prim2 Mul, Num 3), (Prim2 Mul, Num 7)].
The argument, x, is “Num 2.”
The argument, opys, is [(Prim2 Mul, Num 5), (Prim2 Mul, Num 3), (Prim2 Mul, Num 7)].
In foldl (\accum (op,y) -> op accum y) x opys, accum is “Num 2”, op is “Prim2 Mul”
and y is “Num _”. It’s taking the value of fmap Num natural and putting “Prim2 Mul” over
it and the first “Num _” in the list.

Note: The recursive call is in “many”.

CSCC24 Week 11 Notes
4

E.g.

- Again in practice we don't write this code again, we re-factor this into a general function:

chainl1 :: Parser a -- ^ operand parser
 -> Parser (a -> a -> a) -- ^ operator parser
 -> Parser a -- ^ whole answer
chainl1 getArg getOp = liftA2 link
 getArg
 (many (liftA2 (,) getOp getArg))
 where
 link x opys = foldl (\accum (op,y) -> op accum y) x opys

Then we use it like:
mulsLv2 :: Parser Expr
mulsLv2 = chainl1 (fmap Num natural) (operator "*" *> pure (Prim2 Mul))

E.g.

Comparing between mulsLv1 and mulsRv1:

- E.g.

CSCC24 Week 11 Notes
5

Initial space, final junk:

- Token-level parsers assume no leading spaces.
Notice how if we have spaces in front, natural doesn’t work.

This is because natural is expecting to read numbers and it’s reading spaces instead.

- Another problem is that a small parser for a part of the grammar can leave non-space
stuff unconsumed, since we anticipate that later a small parser for another part may
need it. But the overall combined parser for the whole grammar cannot leave any
non-space stuff unconsumed. By the time you're done with the whole grammar, any
non-space leftover means the original input string is actually erroneous.
E.g. We don't consider “2*3*” to be a legal arithmetic expression because our muls
parsers can make sense of the prefix “2*3” but leaves the last “*” unconsumed.

CSCC24 Week 11 Notes
6

- The trick for solving both is to have a “main” parser whose job is simply to clear initial
leading spaces, call the parser for the start symbol, then use eof to check that there is
nothing left.

Here’s the code:
lesson2 :: Parser Expr
lesson2 = whitespaces *> muls <* eof
 where
 muls = chainl1 (fmap Num natural) (operator "*" *> pure (Prim2 Mul))

- Note: We do *> and <* outside of the parser because if we do it inside, there may be

recursive calls to it in the middle of your grammar which may give back the wrong result.
Operator precedence and parentheses:

- Suppose I have two operators “*” and “+”, with “+” having lower precedence, and I also
support parentheses for overriding precedence.

- In other words, from lowest precedence (binding most loosely) to highest (binding most
tightly) is “+”, then “*”, then individual numbers and parentheses (same level without
ambiguity).

- The trick is to have lower (looser) rules call higher (tighter) rules, and have the
parentheses rule call the lowest rule for recursion. The start symbol is from the lowest
rule. This is also how you can write your grammar to convey precedence.

CSCC24 Week 11 Notes
7

- E.g.

So my grammar goes like (start symbol is adds):
adds ::= muls { "+" muls }
muls ::= atom { "*" atom }
atom ::= natural | "(" adds ")"

And my parser goes like (let's say left-associating operators):
lesson3 :: Parser Expr
lesson3 = whitespaces *> adds <* eof
 where
 adds = chainl1 muls (operator "+" *> pure (Prim2 Add))
 muls = chainl1 atom (operator "*" *> pure (Prim2 Mul))
 atom = fmap Num natural <|> (openParen *> adds <* closeParen)

E.g.

Keywords and variables:

- Here is the whole grammar and the start symbol is expr:
expr ::= local | adds
local ::= "let" { var "=" expr ";" } "in" expr
adds ::= muls { "+" muls }
muls ::= atom { "*" atom }
atom ::= natural | var | "(" expr ")"

A problem is “let inn+4” should be a syntax error, but a naïve parser implementation
sees “let”, “in”, “n”, “+”, “4”.

One solution is to use a parser for a reserved word should first read as many alphanums
as possible, not just the expected letters, and then check that the whole string equals the
keyword. This is what keyword does in an earlier section.

Conversely, the parser for identifiers should read likewise, but then check that the string
doesn't clash with reserved words. This is why identifier from earlier takes a parameter
for reserved words to avoid.

CSCC24 Week 11 Notes
8

- Here is the whole parser:

lesson4 :: Parser Expr
lesson4 = whitespaces *> expr <* eof
 where
 expr = local <|> adds

 local = pure (_ eqns _ e -> Let eqns e)
 <*> keyword "let"
 <*> many equation
 <*> keyword "in"
 <*> expr
 -- Basically a liftA4.
 -- Could also be implemented in monadic style, like equation below.

 equation = var
 >>= \v -> operator "="
 >> expr
 >>= \e -> semicolon
 >> return (v, e)
 -- Basically a liftA4.
 -- Recall that liftA4 f a b c d = pure f <*> a <*> b <*> c <*> d
 -- Could also be implemented in applicative style, like local above.

 semicolon = char ';' *> whitespaces
 adds = chainl1 muls (operator "+" *> pure (Prim2 Add))
 muls = chainl1 atom (operator "*" *> pure (Prim2 Mul))
 atom = fmap Num natural
 <|> fmap Var var
 <|> (openParen *> expr <* closeParen)
 var = identifier ["let", "in"]

E.g.

CSCC24 Week 12 Notes
1

Semantics I: Expressions, Bindings, Functions:
- Is used to implement interpreters.
- Definition: static X means doing X by analysing the code, without needing to run it and

wait, while dynamic X means doing X while running the code.
- For a basic setup, I will start with dynamic checking of types and dynamic checking that

variables exist when they are used.
Setup:

- I will have several kinds of run-time errors such Type errors, variable not found, and if
you support division, you will also have division by zero.

- I use the Either monad to represent this possibility.
- We should use an algebraic data type for error messages, especially if later you support

catching and handling errors.
- Here’s the data type for my interpreter:

mainInterp :: Expr -> Either String Value

Note: For simplicity, the professor used String for error messages. We should use an
algebraic data type.
If we get an error, we get something of type String.
Otherwise, we get something of type Value.

- We can use a monad to model the fact that my language has the effect of
errors/exceptions.

- I have a function, raise, for raising errors. It is defined to be simply Left in this lecture but
it won't be that easy in a more featureful interpreter for a more complex language, such
as stateful languages.
Here’s the code for raise:
raise :: String -> Either String a
raise = Left

- I will also be passing around a dictionary that maps variables to values. So I need this:
mainInterp expr = interp expr Map.empty
interp :: Expr -> Map String Value -> Either String Value

The recursion happens in interp, which is a helper interpreter.
Map String Value is used to map variable names to Values.
Now I will implement interp for each construct.

Basic constructs:
- This language has number literals, boolean literals, and binary operators:

data Expr = Num Integer
 | Bln Bool
 | Prim2 Op2 Expr Expr -- Prim2 op operand operand
 | ...

data Op2 = Eq | Plus | Mul

- I will be evaluating them and more to number values, boolean values, and later another
kind of values.

- A clean habit is not to re-use the abstract syntax tree type, but to define a separate type,
since the values have much fewer possibilities, and some possibilities will not
correspond well to any abstract syntax tree.

CSCC24 Week 12 Notes
2

E.g.
data Value = VN Integer
 | VB Bool

- Here is how I evaluate a number literal. Boolean literal is similar.
interp (Num i) _ = pure (VN i)

Arithmetic (all operands evaluated):
- Here is how I evaluate addition; most other arithmetic operators are similar. The insight

is to use structural recursion to evaluate the operands, then you will have number values
to add. The annoying part is to check that the values are actually numbers, so I re-factor
out the checking to a helper function.

- Here’s the code:
interp (Prim2 Plus e1 e2) env =
 interp e1 env
 >>= \a -> intOrDie a
 >>= \i -> interp e2 env
 >>= \b -> intOrDie b
 >>= \j -> return (VN (i+j))

intOrDie :: Value -> Either String Integer
intOrDie (VN i) = pure i
intOrDie _ = raise "type error"

Note: env is a dictionary.
Note: When checking division, we have to check for division by 0 by checking if the
denominator is 0.

Short-circuiting, conditionals (operands selectively evaluated):
- I have an if-then-else:

data Expr = ...
 | Cond Expr Expr Expr -- Cond test then-branch else-branch
If test is true, then we evaluate the “then-branch” only.
Otherwise, we evaluate the “else-branch” only.

This is a short-circuiting operator: some operands are selectively evaluated, others
skipped.
Here is the code:
interp (Cond test eThen eElse) env =
 interp test env
 >>= \a -> case a of
 VB True -> interp eThen env
 VB False -> interp eElse env
 _ -> raise "type error"

You can add short-circuiting logical operators, and, or, and their semantics will be
similar.

CSCC24 Week 12 Notes
3

Variables, local bindings, environments (scopes):
- Here’s the data type:

data Expr = ...
 | Var String

However, where do we get the contents of variables from?
A nice solution is to maintain a dictionary that maps variables to contents, so we can just
look up.
This dictionary is called environment and mapping a variable to its content is called
binding.
Also, the nature of the contents depend on the evaluation strategy of the language. For
example, call by value just needs values, while lazy evaluation needs something more
complex to cater for partly evaluated, partly unevaluated expressions.

- We will use Data.Map for dictionaries. Practical interpreters use hash tables and
compilers use an array because they compile variable names to addresses.

- To evaluate a variable, we just look it up.
If we find it, we return it.
Otherwise, we raise an exception.

- Here’s the code:
interp (Var v) env = case Map.lookup v env of
 Just a -> pure a
 Nothing -> raise "variable not found"

- E.g.

- My local binding construct wraps an expression inside a new local context of 0 or more

“name = expr” bindings.
Here’s the data type:
data Expr = ...
 | Let [(String, Expr)] Expr -- Let [(name, rhs), ...] eval-me

E.g.
let { x=1; y=0 } in x+y is represented as
Let [("x", Num 1), ("y", Num 0)] (Prim2 Plus (Var "x") (Var "y")).

CSCC24 Week 12 Notes
4

- There are a number of decisions to make about the semantics of the local binding
construct. It is also possible to offer many different local binding constructs, one for each
way of making these decisions.

1. Scoping and recursion:
Suppose you have let { x=2+3; y=x+4; } in ….

a. Here, it is equivalent to let { x=2+3 } in let { y=x+4 } in …
So for y=x+4, we use the x in x=2+3.
This is called sequential binding.
If you choose sequential binding, right after you process one equation,
you have to extend the environment to include its new binding, under
which you process the remaining equations and eventually the wrapped
expression.

b. An alternative is that y=x+4 uses an outer x.
This is called parallel binding.
Note: This does not always imply parallel computing. It only implies
semantic independence.

Note: Those two choices don't support mutual recursion. The third alternative
supports mutual recursion, so every equation may use every variable defined in
the same group. If you do call by value, then you also need to place restrictions
on the RHSes.

2. Evaluation strategy:
The choices are call by value, lazy evaluation, and call by name.
With call by value, first go through the equations in the given order, evaluate the
RHS of each one right away, and lastly evaluate the wrapped expression.
E.g.
I will evaluate 2+3 and store the result in x.
Then, I will evaluate x+4, where x=5, and store the result in y.
Then, I will evaluate the stuff after “in”.

- Here’s the code. This is for call by value.
interp (Let eqns evalMe) env =
 extend eqns env
 >>= \env' -> interp evalMe env'
 -- Example:
 -- let x=2+3; y=x+4 in x+y
 -- -> x+y (with x=5, y=9 in the larger environment env')
 -- "extend env eqns" builds env'
 where
 extend [] env = return env
 extend ((v,rhs) : eqns) env =
 interp rhs env
 >>= \a -> let env' = Map.insert v a env
 in extend eqns env'

For extend, if the list is empty, we give back the environment
Otherwise, for each tuple in the list, “v” is the variable and “rhs” is what the variable is set
to.
Since this is call by value, right away, we evaluate RHS under the given environment.
This is the line “interp rhs env”.

CSCC24 Week 12 Notes
5

“interp rhs env” gives back some value. We bind that value with the lambda function. The
lambda function puts the variable and the evaluated rhs into the original environment
and then it makes a recursive call to process the rest of the equation.

E.g. Working on let { x=2+3; y=x+4; } in x+y, we get:

Now we're ready to evaluate x+y under {x = 5, y = 9}.
However these are local variables unknown to the outside.
Suppose I have (let {x=2+3; y=x+4;} in x+y) * (1+1).
I make a recursive call to handle the “let-in”. Inside that recursive call the new
environment {x = 5, y = 9} is built for internal use, but not returned or passed back to the
outside. The outside still uses the outside environment for “1+1”.

- E.g.

Here:
x = 1
y = x + 4 = 1 + 4 = 5
x + y = 1 + 5 = 6

Here:
x = 3 + 4 = 7
y = x + 4 = 7 + 4 = 11
x + y = 7 + 11 = 18.

In the first example, e1 = 5+4 = 9 and e2 = 1+1 = 2. e1 * e2 = 18.
In the second example, e2 = Prim2 Plus (Var "x") (Var "y"). However, when we do
mainInterp (Prim2 Mul e1 e2), the x and y in e1 are not shown to e2. Hence, we get the
error message “variable not found”.

CSCC24 Week 12 Notes
6

Function construction (lambda), closures:
- For simplicity, I just have a lambda construct for anonymous functions.

If you want to define a function with a name, use lambda together with let.
- Here’s the data type:

data Expr = ...
 | Lambda String Expr -- Lambda var body

- E.g. \x -> … is represented as Lambda "x" (...).
- Suppose your lambda is \y->x+y.

y is a bound variable and x is a free variable.
This also carries to let. In let y=x+1 in x*y, y is a bound variable and x is a free variable.
Bound variable of/in an expression: You can see where the variable is introduced or
declared or defined.
Free variable of/in an expression: You can't see where the variable is introduced or
declared or defined. It has to come from the outside.
E.g. A free variable like “x” is probably bound in an outer context.

- When the interpreter runs into the lambda, and if it already knows x=10 from the outer
context, it needs to attach “x=10” to the lambda so it is not forgotten.

- The value after evaluating a lambda needs to remember 3 things
1. parameter name
2. function body
3. the environment in scope for this lambda.

- Definition: The combination of “\y->x+y” plus “x=10 from an outer context” is called a
closure. A closure is a record or data structure that stores an expression together with
the environment for all of its free variables.

- In this lecture, my only use of closures is for lambdas, so my closure representation is
specialized for that purpose only.

- Here’s the data type and code:
data Value = ...
 | VClosure (Map String Value) String Expr
interp (Lambda v body) env = pure (VClosure env v body)

(Map String Value) is the environment.
String is the parameter name(s).
Expr is the function body/expression.

- E.g.

This is equivalent to let {x = 10;} in \y -> x + y

CSCC24 Week 12 Notes
7

Function application:
- Here’s the data type:

data Expr = ...
 | App Expr Expr -- App func param

- There is a decision to make about the semantics of function application, namely which
evaluation strategy should be used: call by value, lazy evaluation, or call by name.
Here, I will do call by value.
Note: All of them require you to evaluate the function until you get a function closure,
sooner or later.

- Since I do call by value, I evaluate the parameter until I get a value. Then, I plug the
value in. To plug the value in, just like evaluating let, I can first extend the environment to
bind the parameter name to the parameter value, then it makes sense to evaluate the
function body under that environment.

- Here’s the code:
interp (App f e) env =
 interp f env
 >>= \c -> case c of
 VClosure fEnv v body ->
 interp e env
 >>= \eVal -> let bEnv = Map.insert v eVal fEnv -- fEnv, not env
 in interp body bEnv
 -- E.g.
 -- (\y -> 10+y) 17
 -- -> 10 + y (but with y=17 in environment)
 --

E.g. for (let x=7 in \y -> x+y) 10:

1. interp on the function gives: VClosure {x = VN 7} "y" (x+y)
2. interp on the “10” gives: VN 10
3. Now do: interp (x+y) {x = VN 7, y = VN 10}

E.g.

- Dynamic scoping is when a variable name refers to whoever has that name at the time

of evaluation. We shouldn’t do this.
E.g.
let {x=10; f = \y->x+y;} in
let {x=5;} in
f0 → 5+0 (Here, x=5 is used instead of x=10)

- Lexical/Static scoping is when a variable name refers to whoever has that name in the
code location. We should do this.

CSCC24 Week 12 Notes
8

Recursion:
- The trick is to take an extra parameter for a function to be called. Then, call a function

with itself as a parameter.
- Here’s an example of doing factorial recursively.

Here’s a trace of let mkFac = \f -> \n -> if n=0 then 1 else n * (f f) (n-1) in mkFac
mkFac 2

 mkFac mkFac 2
→ (\f -> \n -> if n=0 then 1 else n * (f f) (n-1)) mkFac 2
→ (\n -> if n=0 then 1 else n * (mkFac mkFac) (n-1)) 2
→ if 2=0 then 1 else 2 * (mkFac mkFac) (2-1)
→ 2 * (mkFac mkFac) (2-1)
→ 2 * (\f -> \n -> ...) mkFac (2-1)
→ 2 * (\n -> if n=0 then 1 else n * (mkFac mkFac) (n-1)) (2-1)
→ 2 * (\n -> if n=0 then 1 else n * (mkFac mkFac) (n-1)) 1
→ 2 * if 1=0 then 1 else 1 * (mkFac mkFac) (1-1)
→ 2 * 1 * mkFac mkFac (1-1)
→ 2 * 1 * (\n -> if n=0 then 1 else n * mkFac mkFac (n-1)) (1-1)
→ 2 * 1 * (\n -> if n=0 then 1 else n * mkFac mkFac (n-1)) 0
→ 2 * 1 * if 0=0 then 1 else 0 * ...
→ 2 * 1 * 1

